metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1119-m1120

Bis(1,10-phenanthroline-5,6-dione-κ2N,N′)silver(I) tetra­fluoridoborate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 12 August 2009; accepted 13 August 2009; online 22 August 2009)

In the structure of the title compound, [Ag(C12H6N2O2)2]BF4 or [AgL2]BF4 (L = phendione), the Ag and B atoms are located on twofold rotation axes. The dihedral angle between the two phendione ligands is 36.7 (2)°. The coordination about the AgI center is distorted tetra­hedral (τ4 = 0.546). The crystal structure is consolidated by weak C—H⋯O(phendione) and C—H⋯F(BF4) inter­actions. The BF4 counter-anion is strongly disordered and was modelled with two sets of idealized F atoms.

Related literature

For the different coordination properties of phendione, see: Calderazzo et al. (1999[Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389-4396.], 2002[Calderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136-142.]); Calucci et al. (2006[Calucci, L., Pampaloni, G., Pinzino, C. & Prescimone, A. (2006). Inorg. Chim. Acta, 359, 3911-3920.]); Galet et al. (2005[Galet, A., Munoz, M. C., Agusti, G., Martinez, V., Gaspar, A. B. & Real, J. A. (2005). Z. Anorg. Allg. Chem. 631, 1985-1987.]); Lei et al. (1996[Lei, Y., Shi, C. & Anson, F. C. (1996). Inorg. Chem. 35, 3044-3049.]); Okamura et al. (2006[Okamura, R., Fujihara, T., Wada, T. & Tanaka, K. (2006). Bull. Chem. Soc. Jpn, 79, 106-112.]). For examples with phendione ligands where N and O donors are used simultaneously, see: Fox et al. (1991[Fox, G. A., Bhattacharya, S. & Pierpont, C. G. (1991). Inorg. Chem. 30, 2895-2899.]); Shavaleev et al. (2003a[Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003a). Chem. Commun. pp. 1134-1135.],b[Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003b). Chem. Eur. J. 9, 5283-5291.]); Ruiz et al. (1999[Ruiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun. 2, 521-523.]); Paw & Eisenberg (1997[Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287-2293.]). Similar structures containing Ag have also been reported by Onuegbu et al. (2007[Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). Acta Cryst. E63, m2309-m2310.]). For background to phendione chemistry, see: Udeochu et al. (2007[Udeochu, U., Jimerson, T., Vivoni, A., Bakare, O. & Hosten, C. M. (2007). J. Phys. Chem. A, 111, 3409-3415.]); Onuegbu et al. (2007[Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). Acta Cryst. E63, m2309-m2310.]). For reference structural data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Leschke et al. (2002[Leschke, M., Rheinwald, G. & Lang, H. (2002). Z. Anorg. Allg. Chem. 628, 2470-2477.]); Paramonov et al. (2003[Paramonov, S. E., Kuzmina, N. P. & Troyanov, S. I. (2003). Polyhedron, 22, 837-841.]); Pallenberg et al. (1997[Pallenberg, A. J., Marschner, T. M. & Barnhart, D. M. (1997). Polyhedron, 16, 2711-2719.]); Titze et al. (1997[Titze, C., Kaim, W. & Zalis, S. (1997). Inorg. Chem. 36, 2505-2510.]). Details of the τ4 parameter were given by Yang et al. (2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C12H6N2O2)2]BF4

  • Mr = 615.06

  • Monoclinic, C 2/c

  • a = 13.2249 (6) Å

  • b = 12.0115 (17) Å

  • c = 14.4338 (7) Å

  • β = 108.481 (5)°

  • V = 2174.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 200 K

  • 0.44 × 0.37 × 0.28 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction. (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.856, Tmax = 1.000 (expected range = 0.646–0.755)

  • 11815 measured reflections

  • 3647 independent reflections

  • 2306 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 0.98

  • 3647 reflections

  • 204 parameters

  • 32 restraints

  • H-atom parameters constrained

  • Δρmax = 1.81 e Å−3

  • Δρmin = −1.39 e Å−3

Table 1
Selected bond lengths (Å)

Ag—N1 2.356 (2)
Ag—N2 2.357 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.95 2.51 3.347 (4) 147
C1—H1A⋯F1Aii 0.95 2.35 3.083 (6) 133
C2—H2A⋯F1B 0.95 2.17 2.803 (8) 123
C10—H10A⋯F2Aiii 0.95 2.24 2.859 (5) 122
C10—H10A⋯F2Biv 0.95 2.28 3.065 (4) 140
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+1, y-1, -z+{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction. (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction. (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phendione (1,10-phenanthroline-5,6-dione) is an excellent ligand that incorporates two functional groups with different coordination properties (Calderazzo et al., 1999, 2002; Calucci et al., 2006; Galet et al., 2005; Lei et al., 1996; Okamura et al., 2006). This well known ligand possesses both the α-diimine and orthoquinone moieties. While phendione usually binds to metals through its imine N atoms, in some cases both the N and O donors are used simultaneously (Fox et al., 1991; Shavaleev et al., 2003a, b; Ruiz et al., 1999; Paw & Eisenberg, 1997). The crystal structures of two complexes of copper and phendione have been determined (Galet et al., 2005;). Similar structures containing Ag have also been reported (Onuegbu et al., 2007). In this paper, as part of our study of phendione chemistry (Udeochu et al., 2007; Onuegbu et al., 2007), we report the synthesis and characterization of the title compound, [AgL2]+(BF4)-, (I).

The structure of (I), shown in Figure 1, is made up of an [Ag(L)2]+ cation and a tetrafluoridoborate anion. The silver atom is coordinated to the two nitrogen atoms of both phendione ligands. Both the Ag atom of the cation and the B atom of the anion lie on a crystallographic twofold rotation axes. The CO bond lengths in the phendione ligands (1.210 (4) and 1.206 (3) Å) are comparable to those values found in other such complexes (Allen, 2002; Onuegbu et al., 2007). The Ag—N bond lengths (2.356 (2) and 2.357 (2) Å) are similar to those found in related phenanthroline derivatives of silver (Leschke et al., 2002; Paramonov et al., 2003; Pallenberg et al., 1997; Titze et al., 1997).

In (I), the silver cation is in a distorted tetrahedral environment. This is best illustrated by the dihedral angle between the planes of the coordinated ligands which in this case the angle is 36.7 (2)°. This compares with values of 36.8 (2)° found in the analogous perchlorate analog and the values of 32.4° and 70.5° found for other structurally characterized Ag complexes containing the bis(1,10-phenanthroline) core. Another recent parameter for 4-coordinate complexes (τ4, Yang et al., 2007) has been developed to place a structure on the continuum between square planar (0) and tetrahedral (1). For the present structure this value is 0.546.

Copper forms a similar complex with phendione. However, in this case the twofold axis passes between the phendione ligands with a dihedral angle of 44.5° between them.

In the structure of (I), there are weak C—H···O(phendione) and C—H···F(BF4-) interactions (Fig. 2).

Related literature top

For the different coordination properties of phendione, see: Calderazzo et al. (1999, 2002); Calucci et al. (2006); Galet et al. (2005); Lei et al. (1996); Okamura et al. (2006). For examples with phendione ligands where N and O donors are used simultaneously, see: Fox et al. (1991); Shavaleev et al. (2003a,b); Ruiz et al. (1999); Paw & Eisenberg (1997). Similar structures containing Ag have also been reported by Onuegbu et al. (2007). For background to phendione chemistry, see: Udeochu et al. (2007); Onuegbu et al. (2007). For reference structural data, see: Allen (2002); Leschke et al. (2002); Paramonov et al. (2003); Pallenberg et al. (1997); Titze et al. (1997). Details of the τ4 parameter were given by Yang et al. (2007).

Experimental top

A flask containing 1,10-phenanthroline hydrate (1.00 g, 5.04 mmol) and potassium bromide (5.95 g, 50.0 mmol) was placed in an ice bath. Concentrated sulfuric acid (20 cm3) was added in small portions, followed by drop-wise addition of concentrated nitric acid (10 cm3). The resulting solution was heated for 2 h at 253–257 K and cooled to room temperature. The solution was then poured into 400 cm3 of water and neutralized with sodium bicarbonate, after which the phendione was extracted with dichloromethane, and recrystallized using a methanol-water mixture.

The title compound was synthesized in an atmosphere saturated with N2. To a solution of tetrakis(acetonitrile)silver(I)tetrafluoridoborate (0.0843 g) in 10 ml of CH3CN, was added drop-wise a solution (10 ml) of CH3CN containing 0.0492 g of phendione. The final yellowish solution was filtered and allowed to slowly evaporate yielding reddish brown crystals of the title compound suitable for X-ray studies.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C). The tetrafluoridoborate anion is disordered. Two sets of F atoms, constrained to meet the criteria for idealized tetrahedra, were used with occupancy factors of 0.406 (4) and 0.096 (4). The temperature factors for the major component were refined anisotropically and constrained by use of the SIMU and DELU instructions in SHELXL97 (Sheldrick, 2008). In the final difference Fourier there were positive and negative holes of +1.807 and -1.393 eA-3 near the disordered F atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I), [Ag(L)2]+(BF4)-, showing the atom-labelling scheme. The C—H···F interaction is shown as a dashed line. Unlabeled atoms are related by -x, y, 1/2 - z. Displacement ellipsoids are drawn at the 20% probability level. Only the major component of the disordered anion is shown.
[Figure 2] Fig. 2. The molecular packing of (I) viewed approximately along the b axis. Dotted lines indicate the C—H···O and C—H···F interactions. Only the major component of the disordered anion is shown.
Bis(1,10-phenanthroline-5,6-dione-κ2N,N')silver(I) tetrafluoridoborate top
Crystal data top
[Ag(C12H6N2O2)2]BF4F(000) = 1216
Mr = 615.06Dx = 1.879 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5444 reflections
a = 13.2249 (6) Åθ = 4.6–32.4°
b = 12.0115 (17) ŵ = 1.01 mm1
c = 14.4338 (7) ÅT = 200 K
β = 108.481 (5)°Prism, colorless
V = 2174.6 (3) Å30.44 × 0.37 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R
diffractometer
3647 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.6°
ϕ and ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1717
Tmin = 0.856, Tmax = 1.000l = 1621
11815 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.087P)2]
where P = (Fo2 + 2Fc2)/3
3647 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 1.81 e Å3
32 restraintsΔρmin = 1.39 e Å3
Crystal data top
[Ag(C12H6N2O2)2]BF4V = 2174.6 (3) Å3
Mr = 615.06Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.2249 (6) ŵ = 1.01 mm1
b = 12.0115 (17) ÅT = 200 K
c = 14.4338 (7) Å0.44 × 0.37 × 0.28 mm
β = 108.481 (5)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
3647 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2306 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 1.000Rint = 0.024
11815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04732 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 0.98Δρmax = 1.81 e Å3
3647 reflectionsΔρmin = 1.39 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag0.50000.21159 (3)0.25000.04327 (15)
O11.01490 (18)0.3415 (2)0.5002 (2)0.0563 (7)
O20.99985 (17)0.1301 (2)0.56180 (17)0.0507 (6)
N10.65530 (18)0.3220 (2)0.29553 (17)0.0304 (5)
N20.64367 (17)0.10772 (19)0.35180 (17)0.0284 (5)
C10.6565 (2)0.4291 (3)0.2713 (2)0.0371 (6)
H1A0.59410.45990.22610.044*
C20.7443 (2)0.4976 (3)0.3086 (2)0.0413 (7)
H2A0.74140.57420.29140.050*
C30.8357 (2)0.4515 (3)0.3713 (2)0.0387 (7)
H3A0.89800.49570.39660.046*
C40.8364 (2)0.3402 (2)0.39734 (19)0.0294 (5)
C50.9324 (2)0.2908 (2)0.4662 (2)0.0356 (6)
C60.9259 (2)0.1693 (3)0.4981 (2)0.0329 (6)
C70.82541 (19)0.1076 (2)0.45309 (18)0.0282 (5)
C80.8176 (2)0.0024 (3)0.4776 (2)0.0373 (7)
H8A0.87660.03930.52240.045*
C90.7227 (2)0.0579 (3)0.4360 (2)0.0404 (7)
H9A0.71590.13460.44890.048*
C100.6377 (2)0.0010 (2)0.3753 (2)0.0370 (6)
H10A0.57160.03650.34890.044*
C120.7426 (2)0.2784 (2)0.35847 (19)0.0255 (5)
C110.73725 (19)0.1602 (2)0.38786 (18)0.0249 (5)
B0.50000.7040 (2)0.25000.060 (2)
F1A0.4655 (3)0.6438 (4)0.3134 (3)0.0308 (13)0.406 (4)
F2A0.4411 (3)0.7977 (3)0.2246 (4)0.107 (3)0.406 (4)
F3A0.60395 (19)0.7324 (4)0.2940 (3)0.113 (3)0.406 (4)
F4A0.4924 (4)0.6425 (5)0.1696 (3)0.0439 (18)0.406 (4)
F1B0.5925 (6)0.6663 (3)0.2398 (12)0.053 (4)*0.094 (4)
F2B0.50000.8168 (3)0.25000.053 (4)*0.189 (8)
F3B0.4168 (8)0.6665 (3)0.1746 (7)0.053 (4)*0.094 (4)
F4B0.4905 (13)0.6663 (3)0.3353 (5)0.053 (4)*0.094 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.02050 (16)0.0611 (3)0.0386 (2)0.0000.00431 (12)0.000
O10.0270 (11)0.0649 (16)0.0674 (17)0.0135 (11)0.0012 (11)0.0144 (14)
O20.0269 (10)0.0765 (16)0.0400 (12)0.0105 (10)0.0016 (9)0.0064 (12)
N10.0259 (11)0.0366 (12)0.0260 (11)0.0005 (9)0.0045 (9)0.0018 (9)
N20.0236 (10)0.0309 (12)0.0281 (11)0.0015 (8)0.0043 (8)0.0018 (9)
C10.0384 (14)0.0394 (16)0.0301 (14)0.0047 (12)0.0061 (12)0.0040 (12)
C20.0499 (17)0.0374 (16)0.0387 (17)0.0061 (14)0.0171 (14)0.0010 (13)
C30.0368 (14)0.0429 (17)0.0407 (16)0.0119 (12)0.0185 (13)0.0085 (13)
C40.0255 (12)0.0387 (15)0.0257 (12)0.0073 (11)0.0104 (10)0.0074 (11)
C50.0234 (12)0.0477 (17)0.0352 (15)0.0040 (11)0.0087 (11)0.0133 (13)
C60.0216 (11)0.0519 (16)0.0228 (12)0.0036 (11)0.0037 (9)0.0026 (12)
C70.0212 (11)0.0392 (15)0.0235 (12)0.0050 (10)0.0062 (9)0.0006 (10)
C80.0347 (14)0.0453 (17)0.0332 (15)0.0138 (12)0.0126 (12)0.0056 (12)
C90.0442 (16)0.0338 (15)0.0457 (18)0.0038 (13)0.0180 (14)0.0061 (13)
C100.0335 (13)0.0398 (16)0.0400 (16)0.0065 (12)0.0150 (12)0.0032 (12)
C120.0219 (11)0.0349 (14)0.0197 (11)0.0028 (9)0.0067 (9)0.0035 (10)
C110.0207 (10)0.0310 (13)0.0218 (11)0.0015 (10)0.0048 (8)0.0027 (10)
B0.110 (6)0.009 (2)0.085 (5)0.0000.065 (5)0.000
F1A0.032 (3)0.036 (3)0.022 (2)0.022 (2)0.006 (2)0.0135 (18)
F2A0.189 (9)0.027 (3)0.124 (7)0.049 (3)0.077 (6)0.031 (3)
F3A0.141 (7)0.044 (4)0.170 (8)0.033 (4)0.071 (6)0.051 (5)
F4A0.046 (4)0.051 (3)0.027 (3)0.023 (3)0.001 (2)0.003 (2)
Geometric parameters (Å, º) top
Ag—N12.356 (2)C5—C61.541 (5)
Ag—N1i2.356 (2)C6—C71.480 (4)
Ag—N2i2.357 (2)C7—C81.381 (4)
Ag—N22.357 (2)C7—C111.396 (3)
O1—C51.210 (4)C8—C91.379 (4)
O2—C61.206 (3)C8—H8A0.9500
N1—C121.329 (3)C9—C101.380 (4)
N1—C11.335 (4)C9—H9A0.9500
N2—C101.335 (4)C10—H10A0.9500
N2—C111.338 (3)C12—C111.489 (4)
C1—C21.385 (4)B—F1A1.354 (2)
C1—H1A0.9500B—F2A1.352 (2)
C2—C31.377 (4)B—F3A1.362 (2)
C2—H2A0.9500B—F4A1.352 (2)
C3—C41.389 (4)B—F1B1.355 (2)
C3—H3A0.9500B—F2B1.355 (2)
C4—C121.402 (4)B—F3B1.356 (2)
C4—C51.466 (4)B—F4B1.355 (2)
N1—Ag—N1i111.52 (12)C8—C7—C11119.5 (2)
N1—Ag—N2i158.56 (8)C8—C7—C6119.8 (3)
N1i—Ag—N2i70.42 (8)C11—C7—C6120.7 (2)
N1—Ag—N270.42 (8)C9—C8—C7118.8 (3)
N1i—Ag—N2158.56 (8)C9—C8—H8A120.6
N2i—Ag—N2116.08 (11)C7—C8—H8A120.6
C12—N1—C1118.6 (2)C8—C9—C10118.3 (3)
C12—N1—Ag117.40 (18)C8—C9—H9A120.8
C1—N1—Ag123.46 (19)C10—C9—H9A120.8
C10—N2—C11118.4 (2)N2—C10—C9123.5 (3)
C10—N2—Ag124.49 (19)N2—C10—H10A118.3
C11—N2—Ag117.15 (17)C9—C10—H10A118.3
N1—C1—C2123.3 (3)N1—C12—C4122.1 (2)
N1—C1—H1A118.3N1—C12—C11117.4 (2)
C2—C1—H1A118.3C4—C12—C11120.4 (2)
C3—C2—C1118.0 (3)N2—C11—C7121.4 (2)
C3—C2—H2A121.0N2—C11—C12117.4 (2)
C1—C2—H2A121.0C7—C11—C12121.2 (2)
C2—C3—C4119.6 (3)F2A—B—F4A110.07 (10)
C2—C3—H3A120.2F2A—B—F1A109.81 (10)
C4—C3—H3A120.2F4A—B—F1A109.81 (9)
C3—C4—C12118.2 (3)F1A—B—F1B113.8 (5)
C3—C4—C5120.2 (2)F2B—B—F1B109.52 (10)
C12—C4—C5121.6 (3)F2A—B—F4B108.2 (5)
O1—C5—C4123.2 (3)F2B—B—F4B109.52 (10)
O1—C5—C6119.0 (3)F1B—B—F4B109.52 (10)
C4—C5—C6117.9 (2)F4Ai—B—F3B109.1 (6)
O2—C6—C7122.5 (3)F2B—B—F3B109.43 (10)
O2—C6—C5119.3 (3)F1B—B—F3B109.43 (10)
C7—C6—C5118.1 (2)F4B—B—F3B109.41 (10)
N1i—Ag—N1—C12152.8 (2)O2—C6—C7—C11172.5 (3)
N2i—Ag—N1—C12116.1 (2)C5—C6—C7—C113.7 (4)
N2—Ag—N1—C124.37 (18)C11—C7—C8—C90.6 (4)
N1i—Ag—N1—C118.6 (2)C6—C7—C8—C9178.9 (3)
N2i—Ag—N1—C172.5 (3)C7—C8—C9—C103.2 (4)
N2—Ag—N1—C1175.8 (2)C11—N2—C10—C91.0 (4)
N1—Ag—N2—C10176.9 (3)Ag—N2—C10—C9179.2 (2)
N1i—Ag—N2—C1083.9 (3)C8—C9—C10—N22.5 (5)
N2i—Ag—N2—C1019.1 (2)C1—N1—C12—C42.2 (4)
N1—Ag—N2—C112.92 (18)Ag—N1—C12—C4174.04 (19)
N1i—Ag—N2—C1196.3 (3)C1—N1—C12—C11177.1 (2)
N2i—Ag—N2—C11160.7 (2)Ag—N1—C12—C115.3 (3)
C12—N1—C1—C20.2 (4)C3—C4—C12—N12.4 (4)
Ag—N1—C1—C2171.1 (2)C5—C4—C12—N1179.6 (2)
N1—C1—C2—C32.2 (5)C3—C4—C12—C11176.9 (2)
C1—C2—C3—C42.0 (4)C5—C4—C12—C111.1 (4)
C2—C3—C4—C120.2 (4)C10—N2—C11—C73.7 (4)
C2—C3—C4—C5178.3 (3)Ag—N2—C11—C7176.42 (18)
C3—C4—C5—O12.8 (5)C10—N2—C11—C12178.4 (2)
C12—C4—C5—O1179.2 (3)Ag—N2—C11—C121.4 (3)
C3—C4—C5—C6175.6 (3)C8—C7—C11—N23.0 (4)
C12—C4—C5—C62.4 (4)C6—C7—C11—N2175.3 (2)
O1—C5—C6—O25.7 (5)C8—C7—C11—C12179.3 (2)
C4—C5—C6—O2172.7 (3)C6—C7—C11—C122.4 (4)
O1—C5—C6—C7177.9 (3)N1—C12—C11—N22.6 (4)
C4—C5—C6—C73.6 (4)C4—C12—C11—N2176.7 (2)
O2—C6—C7—C85.8 (4)N1—C12—C11—C7179.5 (2)
C5—C6—C7—C8178.0 (3)C4—C12—C11—C71.1 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1ii0.952.513.347 (4)147
C1—H1A···F1Ai0.952.353.083 (6)133
C2—H2A···F1B0.952.172.803 (8)123
C10—H10A···F2Aiii0.952.242.859 (5)122
C10—H10A···F2Biv0.952.283.065 (4)140
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y1, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ag(C12H6N2O2)2]BF4
Mr615.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)13.2249 (6), 12.0115 (17), 14.4338 (7)
β (°) 108.481 (5)
V3)2174.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.44 × 0.37 × 0.28
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.856, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11815, 3647, 2306
Rint0.024
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 0.98
No. of reflections3647
No. of parameters204
No. of restraints32
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.81, 1.39

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag—N12.356 (2)Ag—N22.357 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.952.513.347 (4)147.4
C1—H1A···F1Aii0.952.353.083 (6)133.1
C2—H2A···F1B0.952.172.803 (8)122.6
C10—H10A···F2Aiii0.952.242.859 (5)122.2
C10—H10A···F2Biv0.952.283.065 (4)140.0
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1/2; (iii) x+1, y1, z+1/2; (iv) x, y1, z.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCalderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396.  Web of Science CSD CrossRef Google Scholar
First citationCalderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136–142.  Web of Science CrossRef CAS Google Scholar
First citationCalucci, L., Pampaloni, G., Pinzino, C. & Prescimone, A. (2006). Inorg. Chim. Acta, 359, 3911–3920.  Web of Science CrossRef CAS Google Scholar
First citationFox, G. A., Bhattacharya, S. & Pierpont, C. G. (1991). Inorg. Chem. 30, 2895–2899.  CSD CrossRef CAS Web of Science Google Scholar
First citationGalet, A., Munoz, M. C., Agusti, G., Martinez, V., Gaspar, A. B. & Real, J. A. (2005). Z. Anorg. Allg. Chem. 631, 1985–1987.  Web of Science CSD CrossRef CAS Google Scholar
First citationLei, Y., Shi, C. & Anson, F. C. (1996). Inorg. Chem. 35, 3044–3049.  CrossRef CAS Web of Science Google Scholar
First citationLeschke, M., Rheinwald, G. & Lang, H. (2002). Z. Anorg. Allg. Chem. 628, 2470–2477.  CrossRef CAS Google Scholar
First citationOkamura, R., Fujihara, T., Wada, T. & Tanaka, K. (2006). Bull. Chem. Soc. Jpn, 79, 106–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). Acta Cryst. E63, m2309–m2310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction. (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPallenberg, A. J., Marschner, T. M. & Barnhart, D. M. (1997). Polyhedron, 16, 2711–2719.  CSD CrossRef CAS Web of Science Google Scholar
First citationParamonov, S. E., Kuzmina, N. P. & Troyanov, S. I. (2003). Polyhedron, 22, 837–841.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationRuiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun. 2, 521–523.  Web of Science CSD CrossRef CAS Google Scholar
First citationShavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003a). Chem. Commun. pp. 1134–1135.  Web of Science CSD CrossRef Google Scholar
First citationShavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003b). Chem. Eur. J. 9, 5283–5291.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTitze, C., Kaim, W. & Zalis, S. (1997). Inorg. Chem. 36, 2505–2510.  CSD CrossRef CAS Web of Science Google Scholar
First citationUdeochu, U., Jimerson, T., Vivoni, A., Bakare, O. & Hosten, C. M. (2007). J. Phys. Chem. A, 111, 3409–3415.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1119-m1120
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds