organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(Propane-1,3-di­yl)di­benzoic acid

aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: huajia@jlu.edu.cn

(Received 17 July 2009; accepted 19 August 2009; online 26 August 2009)

The complete molecule of the title compound, C17H16O4, is generated by crystallographic twofold symmetry, with the central C atom lying on the rotation axis and a dihedral angle between the benzene rings of 81.9 (2)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonding between carboxyl groups, forming one-dimensional supra­molecular chains.

Related literature

For general background, see: Bradshaw et al. (2005[Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.]); Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H.-L., Chen, B.-L., Reineke, T. N., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Heo et al. (2007[Heo, J., Jeon, Y. M. & Mirkin, C. A. (2007). J. Am. Chem. Soc. 129, 7712-7713.]); Kesanli & Lin (2003[Kesanli, B. & Lin, W.-B. (2003). Coord. Chem. Rev. 246, 305-326.]). For related structures, see: Dai et al. (2005[Dai, Y.-M., Shen, H.-Y. & Huang, J.-F. (2005). Acta Cryst. E61, o3410-o3411.]); Li et al. (2007[Li, W., Shao, M., Liu, H.-J. & Li, M.-X. (2007). Acta Cryst. E63, o3224.]); Ma et al. (2006[Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165-o1166.]). For the synthesis, see: Cram & Steinberg (1951[Cram, D. J. & Steinberg, H. (1951). J. Am. Chem. Soc. 73, 5691-5704.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O4

  • Mr = 284.30

  • Monoclinic, C 2/c

  • a = 14.569 (3) Å

  • b = 4.7337 (6) Å

  • c = 21.463 (3) Å

  • β = 102.722 (10)°

  • V = 1443.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.48 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.989

  • 3830 measured reflections

  • 1276 independent reflections

  • 688 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 0.94

  • 1276 reflections

  • 96 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.84 2.642 (2) 168
Symmetry code: (i) [-x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the past decades the design and synthesis of metal-organic frameworks have received extensive attention in the field of supra-molecular chemistry and crystal engineering (Bradshaw et al., 2005; Eddaoudi et al., 2001; Heo et al., 2007; Kesanli et al., 2003). As part of our investigation on the metal-organic frameworks (Dai et al., 2005; Li et al., 2007; Ma et al., 2006), we report here the crystal structure of the title compound.

In the crystal structure, the title molecule has site symmetry 2, the C1 atom is located on a twofold rotation axis. The two symmetry-related benzene rings are twisted with respect to each other with a dihedral angle of 81.9 (2)° (Fig. 1). The carboxylic acid groups of neighboring molecules form strong intermolecular O—H···O hydrogen bonds (Table 1), linking the molecules into the one-dimensional supra-molecular chains (Fig. 2).

Related literature top

For general background, see: Bradshaw et al. (2005); Eddaoudi et al. (2001); Heo et al. (2007); Kesanli & Lin (2003). For related structures, see: Dai et al. (2005); Li et al. (2007); Ma et al. (2006). For the synthesis, see: Cram & Steinberg (1951).

Experimental top

4,4'-(Propane-1,3-diyl)dibenzoic acid was synthesized according to literature methods (Cram & Steinberg, 1951), and other reagents were commercially obtained without further purification. In a typical synthesis procedure for the title compound, the reactants Zn(NO3)2.6H2O (0.149 g, 0.5 mmol), 4,4'-(propane-1,3-diyl)dibenzoic acid (0.142 g, 0.5 mmol), HCl (38%, 0.30 ml) and triethylamine (0.35 ml) were mixed in water (5 ml). The mixture was placed in a 15 ml Teflon-lined stainless steel autoclave with a filling capacity of 37.7% and heated under autogenous pressure for 5 d at 453 K. After slow cooling to room temperature, the block-shaped colourless crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 (aromatic), 0.97 (methylene) and O—H = 0.82 Å, and allowed to ride on their parent atoms with Uiso(H) = 0.08 Å2.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at 50% probability level [symmetry code: (i) 1 - x, y, -z + 3/2].
[Figure 2] Fig. 2. A diagram showing the one-dimensional supra-molecular chain formed by intermolecular O—H···O hydrogen bonding (dashed lines).
4,4'-(Propane-1,3-diyl)dibenzoic acid top
Crystal data top
C17H16O4F(000) = 600
Mr = 284.30Dx = 1.308 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 750 reflections
a = 14.569 (3) Åθ = 2.9–24.2°
b = 4.7337 (6) ŵ = 0.09 mm1
c = 21.463 (3) ÅT = 298 K
β = 102.722 (10)°Block, colourless
V = 1443.8 (4) Å30.48 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1276 independent reflections
Radiation source: fine-focus sealed tube688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1117
Tmin = 0.947, Tmax = 0.989k = 55
3830 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
1276 reflections(Δ/σ)max < 0.001
96 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H16O4V = 1443.8 (4) Å3
Mr = 284.30Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.569 (3) ŵ = 0.09 mm1
b = 4.7337 (6) ÅT = 298 K
c = 21.463 (3) Å0.48 × 0.20 × 0.16 mm
β = 102.722 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1276 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
688 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.989Rint = 0.059
3830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.94Δρmax = 0.11 e Å3
1276 reflectionsΔρmin = 0.17 e Å3
96 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.78668 (11)0.0453 (3)0.56693 (7)0.0686 (5)
O20.64734 (11)0.0622 (4)0.49904 (8)0.0698 (5)
H20.67560.17580.48130.080*
C10.50000.6425 (6)0.75000.0519 (9)
H1A0.54790.52150.77520.080*0.50
H1B0.45210.52150.72480.080*0.50
C20.54479 (15)0.8179 (4)0.70454 (9)0.0514 (6)
H2A0.49730.93720.67840.080*
H2B0.59310.93920.72910.080*
C30.58765 (16)0.6279 (4)0.66203 (10)0.0443 (6)
C40.53260 (16)0.5110 (5)0.60728 (11)0.0543 (6)
H40.46950.56170.59510.080*
C50.56894 (16)0.3211 (5)0.57026 (10)0.0522 (6)
H50.53030.24540.53380.080*
C60.66296 (15)0.2426 (4)0.58731 (10)0.0426 (5)
C70.71907 (16)0.3612 (5)0.64125 (11)0.0543 (6)
H70.78240.31290.65300.080*
C80.68157 (17)0.5525 (5)0.67812 (10)0.0552 (6)
H80.72030.63090.71420.080*
C90.70274 (16)0.0329 (4)0.54925 (10)0.0465 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0486 (10)0.0791 (12)0.0795 (12)0.0089 (9)0.0173 (9)0.0169 (10)
O20.0677 (11)0.0776 (12)0.0656 (11)0.0136 (10)0.0178 (10)0.0211 (10)
C10.067 (2)0.0450 (18)0.0520 (19)0.0000.0308 (18)0.000
C20.0647 (15)0.0428 (12)0.0544 (14)0.0017 (11)0.0301 (13)0.0015 (11)
C30.0562 (14)0.0385 (12)0.0441 (13)0.0000 (11)0.0239 (12)0.0053 (11)
C40.0504 (14)0.0615 (15)0.0524 (14)0.0090 (12)0.0144 (13)0.0025 (12)
C50.0536 (14)0.0584 (15)0.0448 (13)0.0060 (12)0.0113 (12)0.0049 (11)
C60.0476 (13)0.0419 (12)0.0419 (13)0.0000 (11)0.0178 (11)0.0033 (10)
C70.0469 (13)0.0603 (15)0.0574 (14)0.0035 (12)0.0148 (12)0.0039 (13)
C80.0561 (15)0.0594 (14)0.0505 (14)0.0008 (13)0.0125 (13)0.0079 (12)
C90.0511 (15)0.0471 (14)0.0438 (14)0.0032 (12)0.0158 (13)0.0003 (11)
Geometric parameters (Å, º) top
O1—C91.254 (2)C3—C41.384 (3)
O2—C91.278 (2)C4—C51.380 (3)
O2—H20.8200C4—H40.9300
C1—C21.532 (2)C5—C61.388 (3)
C1—C2i1.532 (2)C5—H50.9300
C1—H1A0.9700C6—C71.381 (3)
C1—H1B0.9700C6—C91.482 (3)
C2—C31.511 (3)C7—C81.391 (3)
C2—H2A0.9700C7—H70.9300
C2—H2B0.9700C8—H80.9300
C3—C81.382 (3)
C9—O2—H2109.5C5—C4—H4119.2
C2—C1—C2i114.4 (2)C3—C4—H4119.2
C2—C1—H1A108.7C4—C5—C6120.3 (2)
C2i—C1—H1A108.7C4—C5—H5119.9
C2—C1—H1B108.7C6—C5—H5119.9
C2i—C1—H1B108.7C7—C6—C5118.7 (2)
H1A—C1—H1B107.6C7—C6—C9120.2 (2)
C3—C2—C1110.64 (17)C5—C6—C9121.1 (2)
C3—C2—H2A109.5C6—C7—C8120.5 (2)
C1—C2—H2A109.5C6—C7—H7119.8
C3—C2—H2B109.5C8—C7—H7119.8
C1—C2—H2B109.5C3—C8—C7121.1 (2)
H2A—C2—H2B108.1C3—C8—H8119.4
C8—C3—C4117.7 (2)C7—C8—H8119.4
C8—C3—C2121.4 (2)O1—C9—O2122.9 (2)
C4—C3—C2120.8 (2)O1—C9—C6120.3 (2)
C5—C4—C3121.7 (2)O2—C9—C6116.7 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.821.842.642 (2)167.6
Symmetry code: (ii) x+3/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H16O4
Mr284.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)14.569 (3), 4.7337 (6), 21.463 (3)
β (°) 102.722 (10)
V3)1443.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.947, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
3830, 1276, 688
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 0.94
No. of reflections1276
No. of parameters96
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.17

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.842.642 (2)167.6
Symmetry code: (i) x+3/2, y1/2, z+1.
 

Acknowledgements

We thank the National Natural Science Foundation of China.

References

First citationBradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCram, D. J. & Steinberg, H. (1951). J. Am. Chem. Soc. 73, 5691–5704.  CrossRef CAS Web of Science Google Scholar
First citationDai, Y.-M., Shen, H.-Y. & Huang, J.-F. (2005). Acta Cryst. E61, o3410–o3411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H.-L., Chen, B.-L., Reineke, T. N., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeo, J., Jeon, Y. M. & Mirkin, C. A. (2007). J. Am. Chem. Soc. 129, 7712–7713.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKesanli, B. & Lin, W.-B. (2003). Coord. Chem. Rev. 246, 305–326.  Web of Science CrossRef CAS Google Scholar
First citationLi, W., Shao, M., Liu, H.-J. & Li, M.-X. (2007). Acta Cryst. E63, o3224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165–o1166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds