organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Amino-5-methylthia­zol-4-yl)phenol

aCollege of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
*Correspondence e-mail: axhu0731@yahoo.com.cn

(Received 21 July 2009; accepted 11 August 2009; online 15 August 2009)

In the title compound, C10H10N2OS, the benzene ring is nearly co-planar with the thia­zole ring, making a dihedral angle of 2.1 (2)°. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds. An intra­molecular O—H⋯N hydrogen bond is also present.

Related literature

For background to 2-amino-4-aryl­thia­zoles and their wide-ranging anti­fungal activity, see: Hu et al. (2008[Hu, A.-X., Cao, G., Ma, Y.-Q., Zhang, J.-Y. & Ou, X.-M. (2008). Chin. J. Struct. Chem. 27, 1235-1239.]); Kazzouli et al. (2002[Kazzouli, S. E., Berteina-Raboin, S., Mouaddibb, A. & Guillaumeta, G. (2002). Tetrahedron Lett., 43, 3193-3196.]); Holla et al. (2003[Holla, B. S., Malini, K. V., Rao, B. S. N., Sarojini, B. K. & Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313-318.]). For a related structure, see: He et al. (2006[He, D.-H., Cao, G. & Hu, A.-X. (2006). Acta Cryst. E62, o5637-o5638.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2OS

  • Mr = 206.27

  • Orthorhombic, P b c a

  • a = 12.9391 (5) Å

  • b = 10.3967 (4) Å

  • c = 14.2938 (6) Å

  • V = 1922.86 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.48 × 0.42 × 0.39 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.869, Tmax = 0.891

  • 11037 measured reflections

  • 1881 independent reflections

  • 1706 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.150

  • S = 0.98

  • 1881 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.77 2.521 (3) 148
N2—H2B⋯O1i 0.88 2.25 2.961 (3) 138
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds containing thiazole are found to exhibit a wide spectrum of biological activities and many of them are well known antiviral, antifungal agents and some are used as pesticides (Kazzouli et al., 2002; Holla et al., 2003; Hu et al., 2008). The structure of 2-amino-4-arylthiazoles was reported before (He et al., 2006). Herein we report the synthesis and crystal structure of the title compound.

The molecular structure of (I) is illustrated in Fig. 1. The molecules are linked by intermolecular hydrogen bonds (N–H···O) and intramolecular hydrogen bonds (O–H···N) (Table 1). The dihedral angle between the planes of thiazole and the benzene ring is 2.1 (2)°.

Related literature top

For background to 2-amino-4-arylthiazoles and their wide-ranging antifungal activity, see: Hu et al. (2008); Kazzouli et al. (2002); Holla et al. (2003). For a related structure, see: He et al. (2006).

Experimental top

A solution with 0.005 mol of thiourea and 0.005 mol of 2-bromo-1-(2-hydroxyphenyl)-1-propanone in 50 ml of ethanol was refluxed for 10 h. After finishing the reaction, added 10 ml ammonia and continues to stir the solution 2 h. Then the solution was cooled and the precipitate formed was filtered out, dried, giving white crystals of title compound, yield 60.3%. m.p. 388–389 K. The crystals for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The hydroxy H atom was positioned geometrically (O–H = 0.84 Å) and refined as riding [Uiso(H) = 1.5 Ueq(O)]. Methyl H atoms were positioned geometrically (C–H = 0.98 Å) and torsion angles refined to fit the electron density [Uiso(H) = 1.5 Ueq(C)]. Other H atoms were placed in calculated positions (N–H 0.88 Å and aromatic C–H = 0.95 Å) and refined as riding [Uiso(H) = 1.2 Ueq(C, N)]. The highest peak in the final difference Fourier map is 0.79 Å apart from H8 atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoid (arbitrary spheres for H atoms).
2-(2-Amino-5-methylthiazol-4-yl)phenol top
Crystal data top
C10H10N2OSF(000) = 864
Mr = 206.27Dx = 1.425 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7684 reflections
a = 12.9391 (5) Åθ = 2.4–27.0°
b = 10.3967 (4) ŵ = 0.30 mm1
c = 14.2938 (6) ÅT = 173 K
V = 1922.86 (13) Å3Block, yellow
Z = 80.48 × 0.42 × 0.39 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1881 independent reflections
Radiation source: fine-focus sealed tube1706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1514
Tmin = 0.869, Tmax = 0.891k = 1212
11037 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0885P)2 + 3.3976P]
where P = (Fo2 + 2Fc2)/3
1881 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C10H10N2OSV = 1922.86 (13) Å3
Mr = 206.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.9391 (5) ŵ = 0.30 mm1
b = 10.3967 (4) ÅT = 173 K
c = 14.2938 (6) Å0.48 × 0.42 × 0.39 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1881 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1706 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.891Rint = 0.027
11037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 0.98Δρmax = 1.20 e Å3
1881 reflectionsΔρmin = 0.33 e Å3
129 parameters
Special details top

Experimental. 1H NMR (CDCl3, 400 MHz): 2.48 (s, 3H, CH3), 4.97 (br, 2H, NH2), 6.86–7.42(m, 4H, phenyl-H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29069 (5)0.23322 (6)0.58881 (4)0.0269 (2)
C10.2598 (2)0.3782 (2)0.64120 (16)0.0242 (5)
C20.43091 (18)0.4000 (2)0.61774 (16)0.0232 (5)
C30.4199 (2)0.2792 (2)0.58181 (17)0.0266 (6)
C40.52468 (18)0.4802 (2)0.62670 (16)0.0241 (5)
C50.52103 (19)0.6026 (2)0.66966 (17)0.0263 (5)
C60.6103 (2)0.6770 (3)0.67875 (18)0.0315 (6)
H60.60660.75890.70810.038*
C70.7037 (2)0.6329 (3)0.64567 (19)0.0344 (6)
H70.76420.68400.65260.041*
C80.7095 (2)0.5136 (3)0.6021 (2)0.0369 (7)
H80.77380.48290.57900.044*
C90.6212 (2)0.4398 (3)0.59266 (18)0.0314 (6)
H90.62610.35900.56200.038*
C100.4945 (2)0.1822 (3)0.5439 (2)0.0413 (7)
H10A0.52520.21490.48590.062*
H10B0.45790.10160.53090.062*
H10C0.54910.16650.58990.062*
N10.33898 (16)0.45419 (19)0.65168 (14)0.0243 (5)
N20.16111 (17)0.4091 (2)0.66472 (16)0.0316 (5)
H2A0.14730.48500.68890.038*
H2B0.11100.35310.65580.038*
O10.43180 (14)0.65465 (18)0.70442 (15)0.0359 (5)
H10.38330.60150.69850.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (4)0.0238 (4)0.0301 (4)0.0019 (2)0.0005 (2)0.0051 (2)
C10.0263 (12)0.0229 (12)0.0234 (11)0.0001 (9)0.0006 (9)0.0005 (9)
C20.0234 (12)0.0238 (12)0.0225 (11)0.0026 (9)0.0002 (9)0.0014 (9)
C30.0258 (12)0.0266 (13)0.0274 (12)0.0006 (10)0.0004 (9)0.0009 (9)
C40.0236 (12)0.0264 (12)0.0223 (11)0.0008 (9)0.0014 (9)0.0036 (9)
C50.0243 (12)0.0270 (12)0.0277 (12)0.0022 (10)0.0017 (9)0.0022 (10)
C60.0313 (14)0.0312 (13)0.0321 (13)0.0040 (11)0.0043 (11)0.0010 (10)
C70.0285 (14)0.0421 (16)0.0328 (13)0.0106 (11)0.0026 (10)0.0045 (12)
C80.0250 (14)0.0473 (17)0.0385 (14)0.0006 (12)0.0061 (11)0.0019 (13)
C90.0274 (13)0.0335 (14)0.0333 (13)0.0010 (11)0.0047 (10)0.0017 (11)
C100.0338 (15)0.0321 (15)0.0581 (18)0.0044 (12)0.0047 (13)0.0131 (13)
N10.0221 (10)0.0226 (10)0.0282 (10)0.0003 (8)0.0016 (8)0.0015 (8)
N20.0228 (11)0.0298 (11)0.0422 (12)0.0017 (9)0.0024 (9)0.0075 (10)
O10.0242 (9)0.0275 (10)0.0561 (12)0.0006 (7)0.0007 (8)0.0113 (9)
Geometric parameters (Å, º) top
S1—C11.730 (2)C6—H60.9500
S1—C31.742 (3)C7—C81.390 (4)
C1—N11.302 (3)C7—H70.9500
C1—N21.359 (3)C8—C91.382 (4)
C2—C31.364 (4)C8—H80.9500
C2—N11.403 (3)C9—H90.9500
C2—C41.477 (3)C10—H10A0.9800
C3—C101.498 (4)C10—H10B0.9800
C4—C91.405 (3)C10—H10C0.9800
C4—C51.414 (4)N2—H2A0.8800
C5—O11.368 (3)N2—H2B0.8800
C5—C61.397 (4)O1—H10.8400
C6—C71.376 (4)
C1—S1—C390.41 (12)C6—C7—H7120.1
N1—C1—N2124.6 (2)C8—C7—H7120.1
N1—C1—S1113.39 (19)C7—C8—C9119.6 (3)
N2—C1—S1121.98 (19)C7—C8—H8120.2
C3—C2—N1114.3 (2)C9—C8—H8120.2
C3—C2—C4129.6 (2)C8—C9—C4122.4 (3)
N1—C2—C4116.1 (2)C8—C9—H9118.8
C2—C3—C10133.6 (2)C4—C9—H9118.8
C2—C3—S1109.35 (19)C3—C10—H10A109.5
C10—C3—S1117.0 (2)C3—C10—H10B109.5
C9—C4—C5116.7 (2)H10A—C10—H10B109.5
C9—C4—C2122.1 (2)C3—C10—H10C109.5
C5—C4—C2121.2 (2)H10A—C10—H10C109.5
O1—C5—C6116.4 (2)H10B—C10—H10C109.5
O1—C5—C4122.8 (2)C1—N1—C2112.6 (2)
C6—C5—C4120.8 (2)C1—N2—H2A120.0
C7—C6—C5120.6 (3)C1—N2—H2B120.0
C7—C6—H6119.7H2A—N2—H2B120.0
C5—C6—H6119.7C5—O1—H1109.5
C6—C7—C8119.9 (2)
C3—S1—C1—N10.48 (19)C9—C4—C5—C61.2 (3)
C3—S1—C1—N2177.9 (2)C2—C4—C5—C6179.3 (2)
N1—C2—C3—C10175.7 (3)O1—C5—C6—C7179.8 (2)
C4—C2—C3—C103.6 (5)C4—C5—C6—C70.3 (4)
N1—C2—C3—S11.0 (3)C5—C6—C7—C80.5 (4)
C4—C2—C3—S1179.6 (2)C6—C7—C8—C90.2 (4)
C1—S1—C3—C20.85 (19)C7—C8—C9—C40.8 (4)
C1—S1—C3—C10176.5 (2)C5—C4—C9—C81.5 (4)
C3—C2—C4—C93.0 (4)C2—C4—C9—C8179.0 (2)
N1—C2—C4—C9177.7 (2)N2—C1—N1—C2177.3 (2)
C3—C2—C4—C5177.6 (2)S1—C1—N1—C20.0 (3)
N1—C2—C4—C51.8 (3)C3—C2—N1—C10.7 (3)
C9—C4—C5—O1178.9 (2)C4—C2—N1—C1179.9 (2)
C2—C4—C5—O10.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.772.521 (3)148
N2—H2B···O1i0.882.252.961 (3)138
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC10H10N2OS
Mr206.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)12.9391 (5), 10.3967 (4), 14.2938 (6)
V3)1922.86 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.48 × 0.42 × 0.39
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.869, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
11037, 1881, 1706
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.150, 0.98
No. of reflections1881
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.33

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.772.521 (3)148.3
N2—H2B···O1i0.882.252.961 (3)138.1
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

This research was performed with the support of the start-up fund for doctoral research of Guangdong Pharmaceutical University.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, D.-H., Cao, G. & Hu, A.-X. (2006). Acta Cryst. E62, o5637–o5638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolla, B. S., Malini, K. V., Rao, B. S. N., Sarojini, B. K. & Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313–318.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, A.-X., Cao, G., Ma, Y.-Q., Zhang, J.-Y. & Ou, X.-M. (2008). Chin. J. Struct. Chem. 27, 1235–1239.  CAS Google Scholar
First citationKazzouli, S. E., Berteina-Raboin, S., Mouaddibb, A. & Guillaumeta, G. (2002). Tetrahedron Lett., 43, 3193–3196.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds