metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(meso-5,5,7,12,12,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)copper(II) bis­­(O,S-di­benzyl di­thio­phosphate)

aCollege of Chemistry & Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
*Correspondence e-mail: zoulike@yahoo.com.cn

(Received 24 July 2009; accepted 29 July 2009; online 8 August 2009)

In the crystal structure of the title compound, [Cu(C16H36N4)](C14H14O2PS2)2, the CuII atom is located on an inversion center and is chelated by four N atoms of the macrocyclic meso-5,5,7,12,12,14- hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­decane ligand in a square-planar geometry, with Cu—N distances of 2.013 (3) and 2.014 (3) Å. In the crystal structure, one O,S-dibenzyl dithio­phosphate counter-anion links with the CuII complex cation through N—H⋯O and N—H⋯S hydrogen bonding. During the synthesis, the structure of the anion re-arranged from O,O′-dibenzyl dithio­phosphate in the starting material to O,S-dibenzyl dithio­phosphate in the title compound.

Related literature

For a related NiII complex, see: Xie et al. (2008[Xie, B., Zou, L.-K., He, Y.-G., Feng, J.-S. & Zhang, X.-L. (2008). Acta Cryst. E64, m622.]). For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H36N4)](C14H14O2PS2)2

  • Mr = 966.71

  • Monoclinic, P 21 /c

  • a = 11.476 (4) Å

  • b = 17.592 (4) Å

  • c = 11.945 (4) Å

  • β = 99.78 (2)°

  • V = 2376.4 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 289 K

  • 0.44 × 0.40 × 0.35 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.730, Tmax = 0.770

  • 4797 measured reflections

  • 4420 independent reflections

  • 2900 reflections with I > 2σ(I)

  • Rint = 0.006

  • 3 standard reflections every 300 reflections intensity decay: 6.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.154

  • S = 1.04

  • 4420 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1 0.91 2.61 3.359 (3) 140
N2—H2⋯O2i 0.91 1.85 2.762 (4) 176
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of an investigation to the tetramine macrocyclic transition metal complexs and their potential applications as artificial enzyme models, we have reported the structures of [Ni(tet-a)][S2P(OCH2Ph)2]2, where tet-a is a macrocyclic tetramine, meso-5,5,7,12,12,14- hexamethyl-1,4,8,11-tetraazacyclotetradecane (Xie et al., 2008). Here we report the crystal structure of the corresponding title CuII compound, [Cu(tet-a)][OSP(OCH2Ph)(SCH2Ph)]2.

In the title crystal structure, the complex cation [Cu(tet-a)]2+ possesses square-planar geometry about the CuII atom (Fig. 1), which lies across a centre of inversion and is four-coordinated by four N atoms of the tetramine macrocyclic ligand tet-a. All the bond lengths and angles in the adduct are generally within normal ranges (Allen et al., 1987). The two O,S-dibenzyl dithiophosphate anions act as counter-ions to balance the charge of the CuII complex cation, they interact with the complex cation through N—H···O and N—H···S hydrogen bonds (Table 1).

Related literature top

For a related NiII complex, see: Xie et al. (2008). For bond-length data, see Allen et al. (1987).

Experimental top

A solution of meso-5,5,7,12,12,14- hexamethyl-1,4,8,11-tetraazacyclotetradecane dihydrate (0.32 g, 1 mmol) and CuCl2.2H2O (0.17 g, 1 mmol) in 20 ml methanol was added to a solution of diethylammonium O,O'-dibenzyldithiophosphate, [NH2(C2H5)2]+[(PhCH2O)2PS2]- (Fig. 2), (0.77 g, 2 mmol) in 20 ml methanol. The mixture was refluxed for 24 h, then cooled to room temperature, the dark-violet precipitate was collected by filtration, washed with small amounts of methanol. A solution of the title compound in DMSO was kept at room temperature, and dark-violet block crystals suitable for X-ray diffraction studies were obtained in three months.

It should be noted that the title compound contains an unexpected re-arrangement product of the anion; in the starting reagent, [NH2(C2H5)2]+[(PhCH2O)2PS2]-, both of the two benzyl-groups bonded with O atoms, but in the title compound one of them migrated to the neighbouring S atom.

Refinement top

All H atoms attached to C and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å (methylene), 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.91 Å with Uiso(H) = 1.2Ueq(C, N) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen-bonds are shown as dashed lines. H atoms are represented as small spheres of arbitrary radii. [Symmetry code: (i) -x + 1, -y, -z + 1].
[Figure 2] Fig. 2. The starting material [NH2(C2H5)2]+[(PhCH2O)2PS2]-.
(meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11- tetraazacyclotetradecane)copper(II) bis(O,S-dibenzyl dithiophosphate) top
Crystal data top
[Cu(C16H36N4)](C14H14O2PS2)2F(000) = 1022
Mr = 966.71Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 29 reflections
a = 11.476 (4) Åθ = 4.4–11.5°
b = 17.592 (4) ŵ = 0.75 mm1
c = 11.945 (4) ÅT = 289 K
β = 99.78 (2)°Block, dark-violet
V = 2376.4 (13) Å30.44 × 0.40 × 0.35 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2900 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.006
Graphite monochromatorθmax = 25.6°, θmin = 1.8°
ω/2θ scansh = 1313
Absorption correction: ψ scan
(North et al., 1968)
k = 021
Tmin = 0.730, Tmax = 0.770l = 414
4797 measured reflections3 standard reflections every 300 reflections
4420 independent reflections intensity decay: 6.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0968P)2]
where P = (Fo2 + 2Fc2)/3
4420 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cu(C16H36N4)](C14H14O2PS2)2V = 2376.4 (13) Å3
Mr = 966.71Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.476 (4) ŵ = 0.75 mm1
b = 17.592 (4) ÅT = 289 K
c = 11.945 (4) Å0.44 × 0.40 × 0.35 mm
β = 99.78 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2900 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.006
Tmin = 0.730, Tmax = 0.7703 standard reflections every 300 reflections
4797 measured reflections intensity decay: 6.7%
4420 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
4420 reflectionsΔρmin = 0.69 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.50000.0373 (2)
S10.45680 (10)0.16085 (8)0.65146 (9)0.0633 (3)
S20.60091 (9)0.16270 (6)0.90486 (8)0.0523 (3)
P10.46223 (8)0.11046 (6)0.79879 (8)0.0426 (3)
O10.3474 (2)0.12698 (17)0.8538 (2)0.0550 (7)
O20.4729 (3)0.02701 (17)0.8069 (3)0.0610 (8)
N10.6456 (2)0.06574 (17)0.5164 (2)0.0376 (7)
H10.63230.10220.56690.045*
N20.4441 (2)0.05885 (17)0.3564 (2)0.0369 (7)
H20.46820.03120.30020.044*
C10.6406 (3)0.1077 (2)0.4085 (3)0.0475 (9)
H1A0.67120.07620.35350.057*
H1B0.68860.15330.42110.057*
C20.5149 (3)0.1285 (2)0.3647 (3)0.0431 (9)
H2A0.48670.16420.41590.052*
H2B0.50860.15220.29060.052*
C30.3165 (3)0.0731 (2)0.3165 (3)0.0444 (9)
H30.28940.11010.36790.053*
C40.2455 (3)0.0014 (2)0.3192 (3)0.0480 (9)
H4A0.27860.03660.27470.058*
H4B0.16580.01170.28040.058*
C50.2935 (4)0.1062 (3)0.1966 (4)0.0708 (14)
H5A0.33970.15140.19430.106*
H5B0.21110.11830.17570.106*
H5C0.31520.06950.14420.106*
C60.7638 (3)0.0344 (2)0.5661 (3)0.0415 (8)
C70.8558 (4)0.0984 (3)0.5855 (4)0.0667 (13)
H7A0.85870.12370.51490.100*
H7B0.93210.07730.61470.100*
H7C0.83430.13420.63920.100*
C80.8018 (4)0.0231 (2)0.4853 (4)0.0546 (10)
H8A0.73660.05590.45720.082*
H8B0.86620.05280.52460.082*
H8C0.82680.00290.42280.082*
C90.3028 (5)0.2003 (3)0.8600 (5)0.0731 (14)
H9A0.28870.22320.78510.088*
H9B0.35970.23140.90920.088*
C100.1885 (3)0.1965 (2)0.9066 (3)0.0476 (9)
C110.1010 (5)0.1453 (3)0.8683 (4)0.0669 (12)
H110.11190.11130.81140.080*
C120.0002 (4)0.1428 (3)0.9107 (5)0.0750 (14)
H120.05770.10700.88320.090*
C130.0188 (4)0.1915 (3)0.9925 (4)0.0703 (14)
H130.08940.18951.02080.084*
C140.0652 (5)0.2437 (3)1.0342 (4)0.0700 (14)
H140.05300.27721.09140.084*
C150.1705 (4)0.2460 (2)0.9893 (4)0.0579 (11)
H150.22840.28171.01630.070*
C160.5930 (4)0.1139 (3)1.0376 (3)0.0676 (14)
H16A0.52850.13461.07100.081*
H16B0.57780.06031.02300.081*
C170.7064 (3)0.1235 (3)1.1178 (3)0.0492 (10)
C180.7318 (4)0.1904 (3)1.1759 (4)0.0618 (12)
H180.67780.23031.16550.074*
C190.8376 (6)0.1983 (3)1.2498 (4)0.0812 (17)
H190.85360.24371.28930.097*
C200.9167 (5)0.1428 (4)1.2658 (4)0.0847 (18)
H200.98820.14961.31450.102*
C210.8919 (5)0.0752 (3)1.2098 (5)0.0809 (16)
H210.94560.03521.22220.097*
C220.7873 (4)0.0666 (3)1.1349 (4)0.0663 (12)
H220.77180.02111.09550.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0326 (3)0.0406 (4)0.0394 (3)0.0051 (3)0.0081 (2)0.0141 (3)
S10.0623 (7)0.0895 (9)0.0385 (5)0.0165 (6)0.0100 (5)0.0071 (5)
S20.0512 (6)0.0614 (7)0.0420 (5)0.0119 (5)0.0015 (4)0.0061 (5)
P10.0407 (5)0.0505 (6)0.0381 (5)0.0035 (4)0.0110 (4)0.0066 (4)
O10.0499 (16)0.0567 (18)0.0628 (17)0.0093 (14)0.0223 (13)0.0028 (14)
O20.083 (2)0.0394 (16)0.0649 (18)0.0009 (15)0.0241 (16)0.0094 (14)
N10.0390 (15)0.0383 (17)0.0360 (15)0.0010 (13)0.0080 (12)0.0041 (13)
N20.0401 (15)0.0398 (17)0.0317 (14)0.0087 (13)0.0085 (12)0.0053 (13)
C10.051 (2)0.049 (2)0.044 (2)0.0070 (18)0.0104 (17)0.0137 (17)
C20.054 (2)0.034 (2)0.0422 (19)0.0028 (17)0.0115 (16)0.0112 (16)
C30.040 (2)0.045 (2)0.047 (2)0.0107 (17)0.0050 (16)0.0115 (17)
C40.041 (2)0.056 (2)0.045 (2)0.0057 (18)0.0001 (16)0.0022 (18)
C50.060 (3)0.088 (4)0.059 (3)0.010 (3)0.003 (2)0.036 (3)
C60.0346 (18)0.043 (2)0.046 (2)0.0012 (16)0.0029 (15)0.0039 (17)
C70.052 (3)0.067 (3)0.075 (3)0.019 (2)0.004 (2)0.010 (2)
C80.053 (2)0.058 (3)0.055 (2)0.011 (2)0.0157 (19)0.006 (2)
C90.077 (3)0.051 (3)0.100 (4)0.000 (2)0.041 (3)0.006 (3)
C100.040 (2)0.050 (2)0.056 (2)0.0059 (18)0.0167 (17)0.0112 (19)
C110.084 (3)0.055 (3)0.064 (3)0.006 (3)0.015 (2)0.004 (2)
C120.056 (3)0.080 (4)0.087 (4)0.015 (3)0.007 (3)0.006 (3)
C130.051 (3)0.096 (4)0.068 (3)0.015 (3)0.019 (2)0.028 (3)
C140.081 (3)0.082 (4)0.049 (2)0.035 (3)0.015 (2)0.003 (2)
C150.057 (3)0.050 (3)0.062 (3)0.002 (2)0.003 (2)0.001 (2)
C160.055 (3)0.102 (4)0.045 (2)0.023 (3)0.0031 (19)0.018 (2)
C170.046 (2)0.063 (3)0.039 (2)0.013 (2)0.0062 (16)0.0060 (19)
C180.074 (3)0.066 (3)0.048 (2)0.006 (2)0.018 (2)0.005 (2)
C190.114 (5)0.084 (4)0.044 (3)0.044 (4)0.008 (3)0.004 (3)
C200.070 (3)0.113 (5)0.061 (3)0.036 (3)0.016 (3)0.023 (3)
C210.059 (3)0.093 (4)0.085 (4)0.012 (3)0.004 (3)0.029 (3)
C220.072 (3)0.055 (3)0.070 (3)0.010 (2)0.008 (2)0.004 (2)
Geometric parameters (Å, º) top
Cu1—N2i2.013 (3)C7—H7B0.9600
Cu1—N22.013 (3)C7—H7C0.9600
Cu1—N1i2.014 (3)C8—H8A0.9600
Cu1—N12.014 (3)C8—H8B0.9600
S1—P11.9619 (15)C8—H8C0.9600
S2—C161.818 (4)C9—C101.510 (6)
S2—P12.0729 (15)C9—H9A0.9700
P1—O21.475 (3)C9—H9B0.9700
P1—O11.596 (3)C10—C151.359 (6)
O1—C91.394 (5)C10—C111.368 (6)
N1—C11.478 (4)C11—C121.344 (7)
N1—C61.491 (4)C11—H110.9300
N1—H10.9100C12—C131.343 (7)
N2—C21.465 (5)C12—H120.9300
N2—C31.482 (4)C13—C141.364 (7)
N2—H20.9100C13—H130.9300
C1—C21.493 (5)C14—C151.404 (7)
C1—H1A0.9700C14—H140.9300
C1—H1B0.9700C15—H150.9300
C2—H2A0.9700C16—C171.489 (5)
C2—H2B0.9700C16—H16A0.9700
C3—C41.506 (5)C16—H16B0.9700
C3—C51.527 (5)C17—C221.356 (6)
C3—H30.9800C17—C181.372 (6)
C4—C6i1.528 (5)C18—C191.382 (7)
C4—H4A0.9700C18—H180.9300
C4—H4B0.9700C19—C201.325 (8)
C5—H5A0.9600C19—H190.9300
C5—H5B0.9600C20—C211.370 (8)
C5—H5C0.9600C20—H200.9300
C6—C81.513 (5)C21—C221.379 (7)
C6—C4i1.528 (5)C21—H210.9300
C6—C71.533 (5)C22—H220.9300
C7—H7A0.9600
N2i—Cu1—N2180.0C4i—C6—C7108.6 (3)
N2i—Cu1—N1i85.80 (11)C6—C7—H7A109.5
N2—Cu1—N1i94.20 (12)C6—C7—H7B109.5
N2i—Cu1—N194.20 (12)H7A—C7—H7B109.5
N2—Cu1—N185.80 (11)C6—C7—H7C109.5
N1i—Cu1—N1180.0H7A—C7—H7C109.5
C16—S2—P1100.18 (15)H7B—C7—H7C109.5
O2—P1—O1102.66 (17)C6—C8—H8A109.5
O2—P1—S1119.89 (13)C6—C8—H8B109.5
O1—P1—S1112.60 (12)H8A—C8—H8B109.5
O2—P1—S2110.77 (14)C6—C8—H8C109.5
O1—P1—S2105.65 (12)H8A—C8—H8C109.5
S1—P1—S2104.60 (7)H8B—C8—H8C109.5
C9—O1—P1121.8 (3)O1—C9—C10109.2 (4)
C1—N1—C6115.4 (3)O1—C9—H9A109.8
C1—N1—Cu1107.0 (2)C10—C9—H9A109.8
C6—N1—Cu1120.7 (2)O1—C9—H9B109.8
C1—N1—H1103.9C10—C9—H9B109.8
C6—N1—H1103.9H9A—C9—H9B108.3
Cu1—N1—H1103.9C15—C10—C11118.1 (4)
C2—N2—C3112.7 (3)C15—C10—C9119.2 (4)
C2—N2—Cu1106.3 (2)C11—C10—C9122.6 (4)
C3—N2—Cu1121.0 (2)C12—C11—C10121.9 (5)
C2—N2—H2105.2C12—C11—H11119.1
C3—N2—H2105.2C10—C11—H11119.1
Cu1—N2—H2105.2C13—C12—C11120.5 (5)
N1—C1—C2108.7 (3)C13—C12—H12119.8
N1—C1—H1A110.0C11—C12—H12119.8
C2—C1—H1A110.0C12—C13—C14120.4 (4)
N1—C1—H1B110.0C12—C13—H13119.8
C2—C1—H1B110.0C14—C13—H13119.8
H1A—C1—H1B108.3C13—C14—C15118.7 (4)
N2—C2—C1108.1 (3)C13—C14—H14120.7
N2—C2—H2A110.1C15—C14—H14120.7
C1—C2—H2A110.1C10—C15—C14120.4 (4)
N2—C2—H2B110.1C10—C15—H15119.8
C1—C2—H2B110.1C14—C15—H15119.8
H2A—C2—H2B108.4C17—C16—S2109.9 (3)
N2—C3—C4111.1 (3)C17—C16—H16A109.7
N2—C3—C5111.7 (3)S2—C16—H16A109.7
C4—C3—C5109.3 (3)C17—C16—H16B109.7
N2—C3—H3108.2S2—C16—H16B109.7
C4—C3—H3108.2H16A—C16—H16B108.2
C5—C3—H3108.2C22—C17—C18118.4 (4)
C3—C4—C6i119.0 (3)C22—C17—C16120.9 (4)
C3—C4—H4A107.6C18—C17—C16120.6 (4)
C6i—C4—H4A107.6C17—C18—C19119.8 (5)
C3—C4—H4B107.6C17—C18—H18120.1
C6i—C4—H4B107.6C19—C18—H18120.1
H4A—C4—H4B107.0C20—C19—C18121.6 (5)
C3—C5—H5A109.5C20—C19—H19119.2
C3—C5—H5B109.5C18—C19—H19119.2
H5A—C5—H5B109.5C19—C20—C21119.3 (5)
C3—C5—H5C109.5C19—C20—H20120.3
H5A—C5—H5C109.5C21—C20—H20120.3
H5B—C5—H5C109.5C20—C21—C22119.8 (5)
N1—C6—C8109.6 (3)C20—C21—H21120.1
N1—C6—C4i108.1 (3)C22—C21—H21120.1
C8—C6—C4i111.6 (3)C17—C22—C21121.0 (5)
N1—C6—C7110.2 (3)C17—C22—H22119.5
C8—C6—C7108.8 (3)C21—C22—H22119.5
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S10.912.613.359 (3)140
N2—H2···O2i0.911.852.762 (4)176
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C16H36N4)](C14H14O2PS2)2
Mr966.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)289
a, b, c (Å)11.476 (4), 17.592 (4), 11.945 (4)
β (°) 99.78 (2)
V3)2376.4 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.44 × 0.40 × 0.35
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.730, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
4797, 4420, 2900
Rint0.006
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.154, 1.04
No. of reflections4420
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.69

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S10.912.613.359 (3)139.5
N2—H2···O2i0.911.852.762 (4)175.8
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This project was supported by the Education Committee of Sichuan Province of China (project No. 2006 A110, 07ZA161), the Science and Technology Office of Zigong City of China (Project No. 08X01) and the University Key Laboratory of Corrosion and Protection of Materials of Sichuan Province of China (Project No. 2008 C L04).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, B., Zou, L.-K., He, Y.-G., Feng, J.-S. & Zhang, X.-L. (2008). Acta Cryst. E64, m622.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds