organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,5-Di-tert-butyl-4-hy­droxy­benzyl­sulfan­yl)-N′-(3-meth­oxy­benzyl­­idene)acetohydrazide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 July 2009; accepted 1 August 2009; online 8 August 2009)

The title compound, C25H34N2O3S, is a derivative of N′-benzyl­ideneacetohydrazide having substituents on the acetyl and benzylidenyl parts, and displays a planar Ccarbon­yl—NH—NCanis­yl fragment [torsion angle = 174.9 (3)°]. The –NH– unit forms an N—H⋯O hydrogen bond with the carbonyl O atom of an inversion-related mol­ecule.

Related literature

For N-(benzyl­idene)acetohydrazide, see: Litvinov et al. (1991[Litvinov, I. A., Kataeva, O. N., Ermolaeva, L. V., Vagina, G. A., Troepol'skaya, T. V. & Naumov, V. A. (1991). Russ. Chem. Bull. 40, 62-67.]).

[Scheme 1]

Experimental

Crystal data
  • C25H34N2O3S

  • Mr = 442.60

  • Triclinic, [P \overline 1]

  • a = 5.9952 (2) Å

  • b = 10.3199 (3) Å

  • c = 20.6141 (7) Å

  • α = 97.279 (2)°

  • β = 95.916 (2)°

  • γ = 99.981 (2)°

  • V = 1235.72 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 223 K

  • 0.35 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.984

  • 8285 measured reflections

  • 4294 independent reflections

  • 2577 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.219

  • S = 1.06

  • 4294 reflections

  • 287 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.00 2.884 (4) 176
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For N-(benzylidene)acetohydrazide, see: Litvinov et al. (1991).

Experimental top

2-(3,5-Di-tert-butyl-4-hydroxybenzylthio)acetohydrazine (0.5 g, 1.54 mmol) and 3-methoxybenzaldehyde (0.21 g, 1.54 mmol) were heated in toluene (10 ml) for 4 h in the presence of p-toluene sulphonic acid as catalyst. The cool mixture was poured onto ice; the resulting solid was collected, dried and recrystallized from toluene in 70% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The imino H-atom was similarly treated (N–H 0.88 Å).; the hydroxy H-atom was placed in a position such that all H···H contacts exceeded 2.0 Å (O–H 0.84 Å).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C25H34N2O3S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-(3,5-Di-tert-butyl-4-hydroxybenzylsulfanyl)-N'-(3- methoxybenzylidene)acetohydrazide top
Crystal data top
C25H34N2O3SZ = 2
Mr = 442.60F(000) = 476
Triclinic, P1Dx = 1.190 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9952 (2) ÅCell parameters from 1620 reflections
b = 10.3199 (3) Åθ = 2.6–21.7°
c = 20.6141 (7) ŵ = 0.16 mm1
α = 97.279 (2)°T = 223 K
β = 95.916 (2)°Prism, colorless
γ = 99.981 (2)°0.35 × 0.10 × 0.10 mm
V = 1235.72 (7) Å3
Data collection top
Bruker SMART APEX
diffractometer
4294 independent reflections
Radiation source: fine-focus sealed tube2577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 25.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.947, Tmax = 0.984k = 1212
8285 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1218P)2]
where P = (Fo2 + 2Fc2)/3
4294 reflections(Δ/σ)max = 0.001
287 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C25H34N2O3Sγ = 99.981 (2)°
Mr = 442.60V = 1235.72 (7) Å3
Triclinic, P1Z = 2
a = 5.9952 (2) ÅMo Kα radiation
b = 10.3199 (3) ŵ = 0.16 mm1
c = 20.6141 (7) ÅT = 223 K
α = 97.279 (2)°0.35 × 0.10 × 0.10 mm
β = 95.916 (2)°
Data collection top
Bruker SMART APEX
diffractometer
4294 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2577 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.984Rint = 0.035
8285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 1.06Δρmax = 0.61 e Å3
4294 reflectionsΔρmin = 0.27 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.75715 (19)0.78337 (10)0.36105 (5)0.0691 (4)
O10.1621 (4)0.5619 (2)0.06464 (11)0.0613 (8)
H1O0.25380.50930.06050.092*
O20.4442 (5)0.5039 (2)0.40994 (12)0.0635 (8)
O31.6583 (5)0.8943 (3)0.72616 (13)0.0731 (9)
N10.7590 (5)0.5928 (3)0.48032 (14)0.0545 (8)
H10.69260.56600.51370.065*
N20.9784 (5)0.6642 (3)0.49141 (14)0.0531 (8)
C10.2353 (5)0.6087 (3)0.13041 (16)0.0433 (8)
C20.1613 (5)0.5357 (3)0.17936 (15)0.0400 (8)
C30.2413 (6)0.5907 (3)0.24438 (16)0.0435 (8)
H30.19650.54250.27810.052*
C40.3841 (6)0.7132 (3)0.26141 (15)0.0424 (8)
C50.4527 (6)0.7824 (3)0.21091 (16)0.0454 (9)
H50.55170.86540.22210.054*
C60.3814 (5)0.7343 (3)0.14524 (16)0.0432 (9)
C70.0028 (6)0.3992 (3)0.16267 (18)0.0495 (9)
C80.0615 (7)0.3430 (4)0.22584 (19)0.0628 (11)
H8A0.07780.33300.25160.094*
H8B0.16230.25700.21410.094*
H8C0.13670.40360.25170.094*
C90.1096 (7)0.2961 (4)0.1244 (2)0.0632 (11)
H9A0.15370.32750.08430.095*
H9B0.00230.21240.11320.095*
H9C0.24400.28340.15150.095*
C100.2303 (7)0.4132 (4)0.1249 (2)0.0725 (13)
H10A0.20180.44750.08420.109*
H10B0.30190.47410.15180.109*
H10C0.33070.32680.11470.109*
C110.4605 (6)0.8127 (4)0.09063 (17)0.0538 (10)
C120.2542 (7)0.8470 (4)0.04992 (19)0.0673 (12)
H12A0.15210.76560.02910.101*
H12B0.30700.89820.01630.101*
H12C0.17350.89890.07870.101*
C130.6181 (8)0.9471 (4)0.1203 (2)0.0835 (15)
H13A0.75360.93060.14540.125*
H13B0.53720.99880.14900.125*
H13C0.66210.99590.08490.125*
C140.5967 (7)0.7360 (5)0.0464 (2)0.0770 (14)
H14A0.73160.72100.07240.115*
H14B0.64240.78700.01190.115*
H14C0.50300.65110.02660.115*
C150.4592 (7)0.7738 (3)0.33293 (17)0.0567 (10)
H15A0.36800.72110.36070.068*
H15B0.42530.86370.33920.068*
C160.7607 (7)0.6107 (4)0.36385 (18)0.0634 (11)
H16A0.68440.55810.32200.076*
H16B0.91910.59760.36930.076*
C170.6438 (7)0.5632 (3)0.41904 (18)0.0519 (9)
C181.0622 (6)0.6942 (3)0.55202 (18)0.0484 (9)
H180.97390.66580.58450.058*
C191.2932 (6)0.7721 (3)0.57209 (17)0.0456 (9)
C201.4309 (7)0.8176 (4)0.52624 (19)0.0574 (10)
H201.37570.80050.48100.069*
C211.6485 (8)0.8877 (4)0.5475 (2)0.0653 (11)
H211.74180.91770.51640.078*
C221.7322 (7)0.9150 (3)0.6137 (2)0.0547 (10)
H221.88150.96260.62760.066*
C231.5954 (7)0.8718 (3)0.65910 (18)0.0519 (9)
C241.3768 (6)0.8000 (3)0.63807 (17)0.0475 (9)
H241.28430.76980.66930.057*
C251.8769 (8)0.9736 (5)0.7502 (2)0.0793 (14)
H25A1.90130.98190.79790.119*
H25B1.88431.06120.73720.119*
H25C1.99400.93190.73180.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0859 (8)0.0701 (7)0.0346 (6)0.0270 (6)0.0044 (5)0.0117 (4)
O10.0721 (17)0.0705 (17)0.0310 (14)0.0100 (14)0.0009 (12)0.0066 (11)
O20.085 (2)0.0483 (15)0.0520 (17)0.0036 (14)0.0108 (14)0.0139 (12)
O30.082 (2)0.0767 (19)0.0480 (17)0.0086 (16)0.0075 (14)0.0083 (13)
N10.070 (2)0.0470 (17)0.0455 (19)0.0155 (16)0.0058 (16)0.0090 (13)
N20.063 (2)0.0553 (18)0.0430 (19)0.0242 (16)0.0048 (15)0.0065 (14)
C10.0435 (19)0.054 (2)0.0297 (18)0.0018 (16)0.0059 (14)0.0076 (15)
C20.0431 (18)0.0427 (19)0.0349 (19)0.0042 (15)0.0099 (15)0.0092 (14)
C30.055 (2)0.0402 (19)0.038 (2)0.0082 (16)0.0128 (16)0.0129 (15)
C40.059 (2)0.0423 (19)0.0268 (18)0.0117 (16)0.0039 (15)0.0062 (14)
C50.055 (2)0.0417 (18)0.0359 (19)0.0017 (16)0.0001 (15)0.0112 (14)
C60.0425 (19)0.050 (2)0.0348 (19)0.0036 (16)0.0046 (15)0.0146 (15)
C70.050 (2)0.048 (2)0.048 (2)0.0032 (17)0.0141 (17)0.0076 (16)
C80.080 (3)0.049 (2)0.060 (3)0.002 (2)0.026 (2)0.0144 (18)
C90.070 (3)0.051 (2)0.064 (3)0.003 (2)0.019 (2)0.0008 (19)
C100.052 (2)0.072 (3)0.087 (3)0.010 (2)0.005 (2)0.019 (2)
C110.058 (2)0.063 (2)0.034 (2)0.0093 (19)0.0006 (17)0.0154 (17)
C120.072 (3)0.078 (3)0.049 (2)0.004 (2)0.000 (2)0.033 (2)
C130.097 (3)0.080 (3)0.056 (3)0.039 (3)0.006 (2)0.031 (2)
C140.064 (3)0.111 (4)0.054 (3)0.007 (3)0.019 (2)0.027 (2)
C150.091 (3)0.0354 (19)0.043 (2)0.0132 (19)0.004 (2)0.0085 (15)
C160.064 (2)0.086 (3)0.039 (2)0.027 (2)0.0017 (18)0.0077 (19)
C170.070 (3)0.042 (2)0.043 (2)0.0183 (19)0.0060 (19)0.0027 (16)
C180.061 (2)0.0413 (19)0.046 (2)0.0183 (17)0.0036 (18)0.0109 (16)
C190.059 (2)0.0429 (19)0.040 (2)0.0186 (17)0.0070 (17)0.0114 (15)
C200.073 (3)0.063 (2)0.043 (2)0.025 (2)0.0118 (19)0.0108 (18)
C210.081 (3)0.068 (3)0.059 (3)0.028 (2)0.030 (2)0.023 (2)
C220.055 (2)0.045 (2)0.068 (3)0.0146 (18)0.015 (2)0.0109 (18)
C230.063 (2)0.041 (2)0.051 (2)0.0108 (18)0.0031 (19)0.0114 (17)
C240.060 (2)0.0440 (19)0.040 (2)0.0101 (17)0.0085 (17)0.0112 (15)
C250.073 (3)0.080 (3)0.073 (3)0.002 (2)0.019 (2)0.005 (2)
Geometric parameters (Å, º) top
S1—C161.794 (4)C10—H10C0.9700
S1—C151.802 (4)C11—C141.524 (6)
O1—C11.379 (4)C11—C121.540 (5)
O1—H1O0.8400C11—C131.549 (5)
O2—C171.230 (4)C12—H12A0.9700
O3—C231.374 (4)C12—H12B0.9700
O3—C251.423 (5)C12—H12C0.9700
N1—C171.347 (4)C13—H13A0.9700
N1—N21.373 (4)C13—H13B0.9700
N1—H10.8800C13—H13C0.9700
N2—C181.276 (4)C14—H14A0.9700
C1—C21.397 (4)C14—H14B0.9700
C1—C61.411 (4)C14—H14C0.9700
C2—C31.389 (4)C15—H15A0.9800
C2—C71.548 (4)C15—H15B0.9800
C3—C41.380 (4)C16—C171.487 (5)
C3—H30.9400C16—H16A0.9800
C4—C51.392 (4)C16—H16B0.9800
C4—C151.516 (5)C18—C191.465 (5)
C5—C61.378 (5)C18—H180.9400
C5—H50.9400C19—C241.376 (5)
C6—C111.534 (4)C19—C201.391 (5)
C7—C101.538 (5)C20—C211.375 (6)
C7—C91.534 (5)C20—H200.9400
C7—C81.540 (5)C21—C221.382 (5)
C8—H8A0.9700C21—H210.9400
C8—H8B0.9700C22—C231.373 (5)
C8—H8C0.9700C22—H220.9400
C9—H9A0.9700C23—C241.385 (5)
C9—H9B0.9700C24—H240.9400
C9—H9C0.9700C25—H25A0.9700
C10—H10A0.9700C25—H25B0.9700
C10—H10B0.9700C25—H25C0.9700
C16—S1—C15100.04 (17)C11—C12—H12C109.5
C1—O1—H1O95.8H12A—C12—H12C109.5
C23—O3—C25117.4 (3)H12B—C12—H12C109.5
C17—N1—N2120.9 (3)C11—C13—H13A109.5
C17—N1—H1119.6C11—C13—H13B109.5
N2—N1—H1119.6H13A—C13—H13B109.5
C18—N2—N1114.8 (3)C11—C13—H13C109.5
O1—C1—C2120.9 (3)H13A—C13—H13C109.5
O1—C1—C6116.7 (3)H13B—C13—H13C109.5
C2—C1—C6122.4 (3)C11—C14—H14A109.5
C3—C2—C1117.1 (3)C11—C14—H14B109.5
C3—C2—C7120.8 (3)H14A—C14—H14B109.5
C1—C2—C7122.0 (3)C11—C14—H14C109.5
C4—C3—C2122.6 (3)H14A—C14—H14C109.5
C4—C3—H3118.7H14B—C14—H14C109.5
C2—C3—H3118.7C4—C15—S1115.0 (3)
C3—C4—C5118.1 (3)C4—C15—H15A108.5
C3—C4—C15121.4 (3)S1—C15—H15A108.5
C5—C4—C15120.4 (3)C4—C15—H15B108.5
C6—C5—C4122.7 (3)S1—C15—H15B108.5
C6—C5—H5118.7H15A—C15—H15B107.5
C4—C5—H5118.7C17—C16—S1111.4 (3)
C5—C6—C1117.0 (3)C17—C16—H16A109.4
C5—C6—C11121.5 (3)S1—C16—H16A109.4
C1—C6—C11121.5 (3)C17—C16—H16B109.4
C10—C7—C9111.7 (3)S1—C16—H16B109.4
C10—C7—C8106.5 (3)H16A—C16—H16B108.0
C9—C7—C8105.8 (3)O2—C17—N1120.4 (4)
C10—C7—C2110.6 (3)O2—C17—C16121.4 (3)
C9—C7—C2110.9 (3)N1—C17—C16118.1 (4)
C8—C7—C2111.1 (3)N2—C18—C19121.4 (3)
C7—C8—H8A109.5N2—C18—H18119.3
C7—C8—H8B109.5C19—C18—H18119.3
H8A—C8—H8B109.5C24—C19—C20119.1 (3)
C7—C8—H8C109.5C24—C19—C18119.1 (3)
H8A—C8—H8C109.5C20—C19—C18121.8 (3)
H8B—C8—H8C109.5C21—C20—C19119.6 (4)
C7—C9—H9A109.5C21—C20—H20120.2
C7—C9—H9B109.5C19—C20—H20120.2
H9A—C9—H9B109.5C20—C21—C22121.1 (4)
C7—C9—H9C109.5C20—C21—H21119.4
H9A—C9—H9C109.5C22—C21—H21119.4
H9B—C9—H9C109.5C23—C22—C21119.4 (4)
C7—C10—H10A109.5C23—C22—H22120.3
C7—C10—H10B109.5C21—C22—H22120.3
H10A—C10—H10B109.5C22—C23—O3124.7 (3)
C7—C10—H10C109.5C22—C23—C24119.8 (4)
H10A—C10—H10C109.5O3—C23—C24115.5 (3)
H10B—C10—H10C109.5C19—C24—C23121.0 (3)
C14—C11—C6111.2 (3)C19—C24—H24119.5
C14—C11—C12110.8 (3)C23—C24—H24119.5
C6—C11—C12110.4 (3)O3—C25—H25A109.5
C14—C11—C13107.0 (3)O3—C25—H25B109.5
C6—C11—C13111.0 (3)H25A—C25—H25B109.5
C12—C11—C13106.3 (3)O3—C25—H25C109.5
C11—C12—H12A109.5H25A—C25—H25C109.5
C11—C12—H12B109.5H25B—C25—H25C109.5
H12A—C12—H12B109.5
C17—N1—N2—C18174.9 (3)C1—C6—C11—C1262.1 (5)
O1—C1—C2—C3179.3 (3)C5—C6—C11—C131.3 (5)
C6—C1—C2—C31.2 (5)C1—C6—C11—C13179.7 (4)
O1—C1—C2—C70.7 (5)C3—C4—C15—S1111.0 (3)
C6—C1—C2—C7178.8 (3)C5—C4—C15—S171.0 (4)
C1—C2—C3—C41.3 (5)C16—S1—C15—C471.7 (3)
C7—C2—C3—C4178.7 (3)C15—S1—C16—C1771.2 (3)
C2—C3—C4—C51.2 (5)N2—N1—C17—O2177.0 (3)
C2—C3—C4—C15176.9 (3)N2—N1—C17—C160.3 (5)
C3—C4—C5—C60.9 (5)S1—C16—C17—O297.8 (4)
C15—C4—C5—C6177.2 (3)S1—C16—C17—N178.9 (4)
C4—C5—C6—C10.8 (5)N1—N2—C18—C19179.0 (3)
C4—C5—C6—C11179.8 (3)N2—C18—C19—C24179.0 (3)
O1—C1—C6—C5179.1 (3)N2—C18—C19—C200.5 (5)
C2—C1—C6—C51.0 (5)C24—C19—C20—C210.9 (5)
O1—C1—C6—C111.8 (5)C18—C19—C20—C21178.5 (3)
C2—C1—C6—C11180.0 (3)C19—C20—C21—C220.6 (6)
C3—C2—C7—C10119.7 (4)C20—C21—C22—C230.3 (6)
C1—C2—C7—C1060.3 (5)C21—C22—C23—O3179.1 (3)
C3—C2—C7—C9115.8 (4)C21—C22—C23—C241.0 (5)
C1—C2—C7—C964.3 (4)C25—O3—C23—C223.3 (5)
C3—C2—C7—C81.6 (5)C25—O3—C23—C24176.8 (4)
C1—C2—C7—C8178.4 (3)C20—C19—C24—C230.3 (5)
C5—C6—C11—C14117.7 (4)C18—C19—C24—C23179.2 (3)
C1—C6—C11—C1461.3 (4)C22—C23—C24—C190.7 (5)
C5—C6—C11—C12118.9 (4)O3—C23—C24—C19179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.002.884 (4)176
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H34N2O3S
Mr442.60
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)5.9952 (2), 10.3199 (3), 20.6141 (7)
α, β, γ (°)97.279 (2), 95.916 (2), 99.981 (2)
V3)1235.72 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.35 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.947, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8285, 4294, 2577
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.219, 1.06
No. of reflections4294
No. of parameters287
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.002.884 (4)176
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLitvinov, I. A., Kataeva, O. N., Ermolaeva, L. V., Vagina, G. A., Troepol'skaya, T. V. & Naumov, V. A. (1991). Russ. Chem. Bull. 40, 62–67.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds