metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1051-m1052

Di­aqua­bis­­(N,N-di­ethyl­nicotinamide-κN1)bis­[4-(di­methyl­amino)­benzoato-κO]cobalt(II)

aHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey, bAnadolu University, Faculty of Science, Department of Chemistry, 26470 Yenibağlar, Eskişehir, Turkey, cKarabük University, Department of Physics, 78050, Karabük, Turkey, and dKafkas University, Department of Chemistry, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 4 August 2009; accepted 4 August 2009; online 8 August 2009)

The title CoII complex, [Co(C9H10NO2)2(C10H14N2O)2(H2O)2], is centrosymmetric. It contains two dimethyl­amino­benzoate (DMAB) and two diethyl­nicotinamide (DENA) ligands and two water mol­ecules, all of them being monodentate. The four O atoms in the equatorial plane around the Co atom form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms of DENA ligands with the Co—N distance of 2.1519 (11) Å in the axial positions. The Co atom is displaced out of the least-squares plane of the carboxyl­ate group by −0.781 (1) Å. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 5.05 (7)°, while the pyridine and benzene rings are oriented at a dihedral angle of 71.48 (5)°. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. Two weak C—H⋯π inter­actions are also present.

Related literature

For general background, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For related structures, see: Hökelek & Necefoğlu (2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m1078-m1080.]); Sertçelik et al. (2009[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m389-m390.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H10NO2)2(C10H14N2O)2(H2O)2]

  • Mr = 779.79

  • Monoclinic, P 21 /c

  • a = 6.5184 (1) Å

  • b = 20.4829 (3) Å

  • c = 14.6481 (2) Å

  • β = 98.492 (1)°

  • V = 1934.31 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 100 K

  • 0.42 × 0.22 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.817, Tmax = 0.942

  • 18749 measured reflections

  • 4821 independent reflections

  • 4137 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.05

  • 4821 reflections

  • 251 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O2i 0.908 (16) 1.777 (15) 2.6621 (14) 164.0 (16)
O4—H42⋯O2ii 0.907 (16) 1.898 (15) 2.7802 (14) 163.4 (14)
C9—H9⋯O3iii 0.95 2.41 3.3447 (17) 168
C19—H19A⋯O3iv 0.98 2.47 3.403 (2) 160
C15—H15ACg2v 0.98 2.86 3.734 (2) 148
C18—H18BCg1vi 0.98 2.86 3.7907 (19) 158
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y, z-1; (v) x+1, y, z; (vi) -x+1, -y+1, -z. Cg1 and Cg2 are the cetroids of the C2–C7 and N1/C8–C12 rings, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a monomeric complex, with CoII ion on a centre of symmetry, consisting of two DENA and two dimethylaminobenzoate (DMAB) ligands and two water molecules. The structures of similar DENA and/or NA complexes of CoII ion, [Co(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009) and [Co(C9H10NO2)2(C6H6N2O)2(H2O)2] (Hökelek & Necefoğlu, 2007) have also been determined.

In the title compound, all ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the Co atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two pyridine N atoms (N1, N1') of the DENA ligands at 2.1519 (11) Å from the Co atom in the axial positions (Fig. 1). The average Co—O bond length is 2.0955 (10) Å and the Co atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.781 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 5.05 (7)°, while that between rings A and B (N1/C8—C12) is 71.48 (5)°.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. Two weak C—H···π interactions (Table 1) are also found.

Related literature top

For general background, see: Bigoli et al. (1972); Krishnamachari (1974). For related structures, see: Hökelek & Necefoğlu (2007); Sertçelik et al. (2009).

Experimental top

The title compound was prepared by the reaction of CoSO4.7H2O (1.41 g, 5 mmol) in H2O (50 ml) and DENA (1.78 g, 10 mmol) in H2O (50 ml) with sodium p-dimethylaminobenzoate (1.88 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving red single crystals.

Refinement top

Atoms H41 and H42 (for H2O) were located in difference Fourier map and refined isotropically, with restrains of O4—H41 = 0.908 (13), O4—H42 = 0.907 (14) Å and H41—O4—H42 = 106.6 (14)°. The remaining H atoms were positioned geometrically with C—H = 0.95, 0.99 and 0.98 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator:(') -x, -y, -z.
Diaquabis(N,N-diethylnicotinamide-κN1)bis[4- (dimethylamino)benzoato-κO]cobalt(II) top
Crystal data top
[Co(C9H10NO2)2(C10H14N2O)2(H2O)2]F(000) = 826
Mr = 779.79Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9065 reflections
a = 6.5184 (1) Åθ = 2.4–28.3°
b = 20.4829 (3) ŵ = 0.50 mm1
c = 14.6481 (2) ÅT = 100 K
β = 98.492 (1)°Block, red
V = 1934.31 (5) Å30.42 × 0.22 × 0.12 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4821 independent reflections
Radiation source: fine-focus sealed tube4137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.817, Tmax = 0.942k = 2627
18749 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.7829P]
where P = (Fo2 + 2Fc2)/3
4821 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.40 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Co(C9H10NO2)2(C10H14N2O)2(H2O)2]V = 1934.31 (5) Å3
Mr = 779.79Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.5184 (1) ŵ = 0.50 mm1
b = 20.4829 (3) ÅT = 100 K
c = 14.6481 (2) Å0.42 × 0.22 × 0.12 mm
β = 98.492 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4821 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4137 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.942Rint = 0.024
18749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0313 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.40 e Å3
4821 reflectionsΔρmin = 0.30 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.01335 (8)
O10.54021 (15)0.50614 (5)0.36270 (6)0.0169 (2)
O20.87853 (15)0.52883 (5)0.37060 (7)0.0196 (2)
O30.76748 (16)0.28543 (5)0.75280 (7)0.0219 (2)
O40.20770 (15)0.45517 (5)0.45875 (7)0.0182 (2)
H410.162 (3)0.4543 (8)0.5144 (10)0.023*
H420.114 (3)0.4789 (9)0.4204 (11)0.023*
N10.63544 (17)0.40399 (6)0.51022 (8)0.0155 (2)
N21.09307 (19)0.27891 (6)0.71639 (8)0.0191 (2)
N30.6955 (2)0.39432 (7)0.02756 (9)0.0301 (3)
C10.7089 (2)0.50704 (6)0.32932 (9)0.0151 (3)
C20.7037 (2)0.47929 (7)0.23444 (9)0.0163 (3)
C30.5191 (2)0.45744 (7)0.18361 (10)0.0208 (3)
H30.39380.46100.20920.025*
C40.5143 (2)0.43063 (8)0.09649 (10)0.0241 (3)
H40.38570.41700.06280.029*
C50.6975 (2)0.42340 (7)0.05741 (10)0.0224 (3)
C60.8826 (2)0.44567 (8)0.10906 (10)0.0235 (3)
H61.00890.44180.08440.028*
C70.8845 (2)0.47324 (7)0.19537 (10)0.0206 (3)
H71.01180.48830.22860.025*
C80.6312 (2)0.36554 (7)0.43557 (9)0.0172 (3)
H80.56920.38200.37740.021*
C90.7131 (2)0.30305 (7)0.43964 (9)0.0192 (3)
H90.70710.27720.38550.023*
C100.8040 (2)0.27915 (7)0.52449 (10)0.0186 (3)
H100.86150.23650.52950.022*
C110.8101 (2)0.31852 (7)0.60242 (9)0.0153 (3)
C120.7227 (2)0.38028 (7)0.59202 (9)0.0150 (3)
H120.72480.40690.64520.018*
C130.8903 (2)0.29329 (6)0.69730 (9)0.0160 (3)
C141.2464 (2)0.29630 (8)0.65634 (11)0.0251 (3)
H14A1.36490.31870.69370.030*
H14B1.18250.32730.60860.030*
C151.3266 (3)0.23750 (10)0.60918 (14)0.0388 (4)
H15A1.41340.25230.56400.058*
H15B1.20910.21240.57760.058*
H15C1.40890.20990.65550.058*
C161.1660 (2)0.24446 (8)0.80324 (11)0.0248 (3)
H16A1.10230.26470.85370.030*
H16B1.31830.24950.81830.030*
C171.1129 (3)0.17229 (8)0.79793 (12)0.0311 (4)
H17A1.15680.15200.85820.047*
H17B1.18480.15130.75150.047*
H17C0.96280.16700.78060.047*
C180.5005 (3)0.37807 (9)0.08350 (11)0.0334 (4)
H18A0.52670.36110.14320.050*
H18B0.41390.41730.09330.050*
H18C0.42870.34480.05190.050*
C190.8816 (3)0.39299 (9)0.06991 (12)0.0361 (4)
H19A0.85230.37190.13050.054*
H19B0.98960.36850.03050.054*
H19C0.92950.43780.07750.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01466 (13)0.01570 (13)0.00949 (12)0.00226 (9)0.00115 (9)0.00087 (9)
O10.0169 (5)0.0216 (5)0.0122 (4)0.0031 (4)0.0019 (4)0.0006 (4)
O20.0188 (5)0.0258 (5)0.0138 (5)0.0010 (4)0.0015 (4)0.0012 (4)
O30.0251 (5)0.0259 (5)0.0155 (5)0.0055 (4)0.0056 (4)0.0033 (4)
O40.0183 (5)0.0221 (5)0.0137 (5)0.0017 (4)0.0008 (4)0.0024 (4)
N10.0156 (5)0.0179 (6)0.0130 (5)0.0010 (4)0.0020 (4)0.0005 (4)
N20.0193 (6)0.0192 (6)0.0179 (6)0.0021 (5)0.0001 (5)0.0018 (5)
N30.0372 (8)0.0363 (8)0.0173 (6)0.0003 (6)0.0056 (6)0.0098 (6)
C10.0194 (6)0.0140 (6)0.0118 (6)0.0035 (5)0.0016 (5)0.0023 (5)
C20.0200 (7)0.0168 (6)0.0121 (6)0.0016 (5)0.0028 (5)0.0014 (5)
C30.0207 (7)0.0245 (7)0.0180 (7)0.0003 (6)0.0050 (6)0.0027 (6)
C40.0243 (8)0.0290 (8)0.0180 (7)0.0020 (6)0.0000 (6)0.0041 (6)
C50.0319 (8)0.0204 (7)0.0153 (7)0.0009 (6)0.0052 (6)0.0018 (5)
C60.0248 (7)0.0281 (8)0.0193 (7)0.0007 (6)0.0091 (6)0.0032 (6)
C70.0205 (7)0.0250 (7)0.0164 (7)0.0002 (6)0.0034 (5)0.0010 (6)
C80.0185 (7)0.0204 (7)0.0126 (6)0.0010 (5)0.0017 (5)0.0007 (5)
C90.0235 (7)0.0194 (7)0.0148 (6)0.0003 (5)0.0035 (5)0.0048 (5)
C100.0213 (7)0.0162 (6)0.0186 (7)0.0025 (5)0.0038 (5)0.0021 (5)
C110.0150 (6)0.0184 (6)0.0128 (6)0.0001 (5)0.0030 (5)0.0003 (5)
C120.0153 (6)0.0171 (6)0.0128 (6)0.0001 (5)0.0022 (5)0.0019 (5)
C130.0204 (7)0.0121 (6)0.0150 (6)0.0019 (5)0.0008 (5)0.0017 (5)
C140.0182 (7)0.0306 (8)0.0264 (8)0.0030 (6)0.0027 (6)0.0001 (6)
C150.0240 (8)0.0493 (11)0.0455 (11)0.0045 (8)0.0126 (8)0.0178 (9)
C160.0257 (8)0.0248 (8)0.0210 (7)0.0051 (6)0.0058 (6)0.0027 (6)
C170.0355 (9)0.0238 (8)0.0331 (9)0.0070 (7)0.0016 (7)0.0064 (7)
C180.0487 (11)0.0339 (9)0.0168 (7)0.0074 (8)0.0026 (7)0.0067 (6)
C190.0560 (12)0.0315 (9)0.0251 (8)0.0078 (8)0.0200 (8)0.0086 (7)
Geometric parameters (Å, º) top
Co1—O12.0701 (9)C7—H70.9500
Co1—O1i2.0701 (9)C8—H80.9500
Co1—O42.1209 (10)C9—C81.385 (2)
Co1—O4i2.1209 (10)C9—C101.385 (2)
Co1—N12.1519 (11)C9—H90.9500
Co1—N1i2.1519 (11)C10—C111.3934 (18)
O1—C11.2676 (16)C10—H100.9500
O2—C11.2611 (17)C11—C121.3863 (19)
O3—C131.2332 (17)C12—H120.9500
O4—H410.908 (13)C13—C111.5026 (18)
O4—H420.907 (14)C14—H14A0.9900
N1—C81.3445 (17)C14—H14B0.9900
N1—C121.3393 (17)C15—C141.519 (2)
N2—C131.3423 (18)C15—H15A0.9800
N2—C141.4696 (19)C15—H15B0.9800
N2—C161.4710 (18)C15—H15C0.9800
N3—C51.3782 (18)C16—H16A0.9900
N3—C181.446 (2)C16—H16B0.9900
N3—C191.442 (2)C17—C161.518 (2)
C2—C11.4973 (18)C17—H17A0.9800
C3—C21.392 (2)C17—H17B0.9800
C3—H30.9500C17—H17C0.9800
C4—C31.385 (2)C18—H18A0.9800
C4—C51.406 (2)C18—H18B0.9800
C4—H40.9500C18—H18C0.9800
C6—C71.383 (2)C19—H19A0.9800
C6—C51.403 (2)C19—H19B0.9800
C6—H60.9500C19—H19C0.9800
C7—C21.3896 (19)
O1i—Co1—O1180.0C8—C9—C10118.46 (13)
O1—Co1—O489.24 (4)C8—C9—H9120.8
O1i—Co1—O490.76 (4)C10—C9—H9120.8
O1—Co1—O4i90.76 (4)C9—C10—C11119.15 (13)
O1i—Co1—O4i89.24 (4)C9—C10—H10120.4
O1—Co1—N190.78 (4)C11—C10—H10120.4
O1i—Co1—N189.22 (4)C10—C11—C13121.49 (12)
O1—Co1—N1i89.22 (4)C12—C11—C10118.47 (12)
O1i—Co1—N1i90.78 (4)C12—C11—C13119.79 (12)
O4—Co1—O4i180.00 (5)N1—C12—C11122.85 (12)
O4—Co1—N188.07 (4)N1—C12—H12118.6
O4i—Co1—N191.93 (4)C11—C12—H12118.6
O4—Co1—N1i91.93 (4)O3—C13—N2123.31 (13)
O4i—Co1—N1i88.07 (4)O3—C13—C11118.90 (12)
N1—Co1—N1i180.0N2—C13—C11117.76 (12)
C1—O1—Co1128.10 (9)N2—C14—C15112.96 (14)
Co1—O4—H4198.7 (11)N2—C14—H14A109.0
Co1—O4—H42116.0 (11)N2—C14—H14B109.0
H42—O4—H41106.6 (14)C15—C14—H14A109.0
C8—N1—Co1121.32 (9)C15—C14—H14B109.0
C12—N1—Co1120.62 (9)H14A—C14—H14B107.8
C12—N1—C8118.05 (12)C14—C15—H15A109.5
C13—N2—C14123.91 (12)C14—C15—H15B109.5
C13—N2—C16117.90 (12)C14—C15—H15C109.5
C14—N2—C16118.19 (12)H15A—C15—H15B109.5
C5—N3—C18120.12 (14)H15A—C15—H15C109.5
C5—N3—C19120.00 (14)H15B—C15—H15C109.5
C19—N3—C18118.49 (13)N2—C16—C17112.39 (13)
O1—C1—C2116.77 (12)N2—C16—H16A109.1
O2—C1—O1124.70 (12)N2—C16—H16B109.1
O2—C1—C2118.53 (12)C17—C16—H16A109.1
C3—C2—C1121.19 (12)C17—C16—H16B109.1
C7—C2—C1120.78 (13)H16A—C16—H16B107.9
C7—C2—C3118.01 (13)C16—C17—H17A109.5
C2—C3—H3119.3C16—C17—H17B109.5
C4—C3—C2121.36 (14)C16—C17—H17C109.5
C4—C3—H3119.3H17A—C17—H17B109.5
C3—C4—C5120.77 (14)H17A—C17—H17C109.5
C3—C4—H4119.6H17B—C17—H17C109.5
C5—C4—H4119.6N3—C18—H18A109.5
N3—C5—C4121.18 (14)N3—C18—H18B109.5
N3—C5—C6121.37 (14)N3—C18—H18C109.5
C6—C5—C4117.44 (13)H18A—C18—H18B109.5
C5—C6—H6119.5H18A—C18—H18C109.5
C7—C6—C5121.10 (14)H18B—C18—H18C109.5
C7—C6—H6119.5N3—C19—H19A109.5
C2—C7—H7119.3N3—C19—H19B109.5
C6—C7—C2121.30 (14)N3—C19—H19C109.5
C6—C7—H7119.4H19A—C19—H19B109.5
N1—C8—C9123.02 (13)H19A—C19—H19C109.5
N1—C8—H8118.5H19B—C19—H19C109.5
C9—C8—H8118.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.91 (2)1.78 (2)2.6621 (14)164 (2)
O4—H42···O2ii0.91 (2)1.90 (2)2.7802 (14)163 (1)
C9—H9···O3iii0.952.413.3447 (17)168
C19—H19A···O3iv0.982.473.403 (2)160
C15—H15A···Cg2v0.982.863.734 (2)148
C18—H18B···Cg1vi0.982.863.7907 (19)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y, z1; (v) x+1, y, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C9H10NO2)2(C10H14N2O)2(H2O)2]
Mr779.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.5184 (1), 20.4829 (3), 14.6481 (2)
β (°) 98.492 (1)
V3)1934.31 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.42 × 0.22 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.817, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
18749, 4821, 4137
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.05
No. of reflections4821
No. of parameters251
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.30

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.908 (16)1.777 (15)2.6621 (14)164.0 (16)
O4—H42···O2ii0.907 (16)1.898 (15)2.7802 (14)163.4 (14)
C9—H9···O3iii0.952.413.3447 (17)168
C19—H19A···O3iv0.982.473.403 (2)160
C15—H15A···Cg2v0.982.863.734 (2)148
C18—H18B···Cg1vi0.982.863.7907 (19)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y, z1; (v) x+1, y, z; (vi) x+1, y+1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m1078–m1080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m389–m390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1051-m1052
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds