organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-1-(3-nitro­phen­yl)-5-phenyl-4,5-di­hydro-1H-pyrazole

aEnergy Research Institute Co Ltd, Henan Academy of Sciences, Zhengzhou 450000, People's Republic of China, and bSchool of Chemistry and Biological Engineering, Guilin University of Technology, People's Republic of China
*Correspondence e-mail: junqiangchen2009@126.com

(Received 6 August 2009; accepted 9 August 2009; online 15 August 2009)

In the title compound, C16H15N3O2, the planar [maximum deviation 0.156 (2) Å] pyrazoline ring is nearly coplanar with the 3-nitro­phenyl group and is approximately perpendicular to the phenyl ring, making dihedral angles of 3.80 (8) and 80.58 (10)°, respectively. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of pyrazoline derivatives, see: Hatheway et al. (1978[Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. & Quinn, F. R. (1978). J. Med. Chem. 21, 563-567.]); Mahajan et al. (1991[Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-246.]); Sobczak & Pawlaczyk (1998[Sobczak, H. & Pawlaczyk, J. (1998). Acta Pol. Pharm. 55, 279-283.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O2

  • Mr = 281.31

  • Monoclinic, P 21 /n

  • a = 12.0173 (4) Å

  • b = 7.9324 (2) Å

  • c = 15.4944 (5) Å

  • β = 99.160 (2)°

  • V = 1458.18 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.36 × 0.18 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10272 measured reflections

  • 3014 independent reflections

  • 1648 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.00

  • 3014 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O1i 0.93 2.51 3.245 (2) 136
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The derivatives of pyrazoline are mostly used in medicine, for example as antitumor (Hatheway et al., 1978), analgesic (Sobczak & Pawlaczyk, 1998), and antimicrobial (Mahajan et al., 1991) agents. As part of our work, the title compound is recently synthesized in our group and its crystal structure is reported here.

The pyrazoline ring and the 3-nitrophenyl ring are nearly coplanar, making a dihedral angle of 3.80 (8)°, while the dihedral angle between the pyrazoline ring and the C1-phenyl ring is 80.58 (10)° (Fig. 1). Intermolecular weak C—H···O hydrogen bonding is present in the crystal structure (Fig. 2 and Table 1).

Related literature top

For applications of pyrazoline derivatives, see: Hatheway et al. (1978); Mahajan et al. (1991); Sobczak & Pawlaczyk (1998).

Experimental top

3-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml). The mixture was stirred for several min at 351 K, benzylideneacetone (1 mmol, 0.146 g) in ethanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol, red single crystals were obtained after 2 d.

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.97 (methylene), 0.98 (methine) and 0.96 Å (methyl), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing of (I), showing the intermolecular hydrogen bonds as dashed lines.
3-Methyl-1-(3-nitrophenyl)-5-phenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C16H15N3O2F(000) = 592
Mr = 281.31Dx = 1.281 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1824 reflections
a = 12.0173 (4) Åθ = 2.6–26.5°
b = 7.9324 (2) ŵ = 0.09 mm1
c = 15.4944 (5) ÅT = 296 K
β = 99.160 (2)°Plate, red
V = 1458.18 (8) Å30.36 × 0.18 × 0.07 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.5°, θmin = 2.0°
ω scansh = 1415
10272 measured reflectionsk = 98
3014 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0621P)2]
where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H15N3O2V = 1458.18 (8) Å3
Mr = 281.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0173 (4) ŵ = 0.09 mm1
b = 7.9324 (2) ÅT = 296 K
c = 15.4944 (5) Å0.36 × 0.18 × 0.07 mm
β = 99.160 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1648 reflections with I > 2σ(I)
10272 measured reflectionsRint = 0.034
3014 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
3014 reflectionsΔρmin = 0.20 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.40009 (13)0.17187 (19)0.06087 (10)0.0433 (4)
N20.29773 (12)0.18897 (16)0.00749 (10)0.0578 (4)
C150.54447 (14)0.00161 (19)0.13960 (10)0.0454 (4)
C70.24060 (14)0.3481 (2)0.02008 (11)0.0535 (5)
H7A0.28790.41560.05290.064*
C160.44095 (13)0.01314 (19)0.08743 (10)0.0425 (4)
H16A0.39910.08320.07030.051*
N10.23515 (12)0.04742 (18)0.02230 (9)0.0548 (4)
C120.46581 (14)0.3125 (2)0.08824 (11)0.0519 (5)
H4A0.43950.41970.07140.062*
C60.21138 (13)0.4493 (2)0.05545 (11)0.0472 (4)
C130.56934 (14)0.2941 (2)0.13993 (12)0.0561 (5)
H13A0.61210.38950.15720.067*
N30.58488 (14)0.1672 (2)0.16800 (11)0.0619 (4)
C10.21969 (14)0.6221 (2)0.05691 (13)0.0584 (5)
H1B0.24560.67770.01110.070*
O10.67543 (13)0.17917 (18)0.21576 (11)0.0990 (6)
C140.61085 (14)0.1383 (2)0.16652 (11)0.0536 (5)
H14A0.68090.12590.20130.064*
O20.52813 (13)0.28871 (17)0.14279 (11)0.0905 (5)
C50.17261 (15)0.3710 (3)0.12393 (13)0.0650 (5)
H5A0.16640.25420.12410.078*
C80.13676 (16)0.2830 (2)0.08217 (13)0.0684 (6)
H8A0.06750.32400.06490.082*
H8B0.13910.31680.14200.082*
C90.14648 (15)0.0972 (2)0.07219 (12)0.0591 (5)
C40.14288 (17)0.4619 (3)0.19199 (14)0.0777 (6)
H12A0.11660.40650.23770.093*
C20.19016 (16)0.7141 (3)0.12524 (16)0.0729 (6)
H2A0.19630.83100.12550.088*
C30.15175 (17)0.6329 (4)0.19279 (14)0.0777 (6)
H3A0.13180.69450.23910.093*
C100.06227 (18)0.0247 (3)0.11675 (16)0.0957 (8)
H10A0.08560.13750.10020.144*
H10B0.05670.01240.17890.144*
H10C0.00980.00290.09990.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0398 (10)0.0436 (10)0.0470 (10)0.0024 (8)0.0079 (8)0.0019 (8)
N20.0495 (9)0.0418 (8)0.0756 (11)0.0045 (7)0.0098 (8)0.0003 (7)
C150.0460 (10)0.0452 (10)0.0457 (10)0.0054 (8)0.0097 (8)0.0021 (8)
C70.0505 (11)0.0526 (11)0.0567 (11)0.0095 (9)0.0057 (9)0.0079 (9)
C160.0402 (10)0.0422 (10)0.0451 (10)0.0005 (7)0.0066 (8)0.0016 (7)
N10.0486 (9)0.0553 (9)0.0586 (10)0.0003 (7)0.0028 (8)0.0044 (7)
C120.0524 (11)0.0414 (10)0.0613 (12)0.0019 (8)0.0072 (9)0.0004 (8)
C60.0393 (10)0.0503 (11)0.0509 (11)0.0056 (8)0.0044 (8)0.0076 (8)
C130.0483 (11)0.0520 (11)0.0669 (13)0.0111 (9)0.0059 (10)0.0090 (9)
N30.0575 (10)0.0596 (11)0.0673 (11)0.0122 (9)0.0054 (9)0.0115 (9)
C10.0515 (11)0.0548 (12)0.0698 (13)0.0035 (9)0.0127 (10)0.0041 (10)
O10.0680 (10)0.0945 (12)0.1213 (13)0.0163 (8)0.0254 (10)0.0320 (9)
C140.0414 (10)0.0600 (12)0.0576 (12)0.0024 (9)0.0020 (9)0.0024 (9)
O20.0924 (11)0.0471 (8)0.1237 (14)0.0038 (8)0.0081 (10)0.0076 (8)
C50.0650 (13)0.0650 (12)0.0661 (13)0.0024 (10)0.0139 (11)0.0113 (11)
C80.0642 (13)0.0779 (14)0.0579 (13)0.0157 (11)0.0064 (10)0.0013 (10)
C90.0494 (11)0.0694 (13)0.0555 (12)0.0051 (10)0.0012 (10)0.0062 (10)
C40.0732 (15)0.1004 (19)0.0631 (15)0.0073 (13)0.0215 (12)0.0091 (13)
C20.0633 (13)0.0636 (13)0.0913 (17)0.0054 (11)0.0102 (13)0.0148 (12)
C30.0609 (13)0.1077 (19)0.0644 (15)0.0120 (13)0.0094 (11)0.0195 (14)
C100.0690 (15)0.1000 (18)0.1050 (19)0.0036 (12)0.0269 (13)0.0190 (14)
Geometric parameters (Å, º) top
C11—N21.375 (2)N3—O21.2093 (18)
C11—C161.390 (2)N3—O11.2185 (19)
C11—C121.393 (2)C1—C21.378 (3)
N2—N11.3888 (18)C1—H1B0.9300
N2—C71.4678 (19)C14—H14A0.9300
C15—C141.371 (2)C5—C41.371 (3)
C15—C161.374 (2)C5—H5A0.9300
C15—N31.468 (2)C8—C91.485 (3)
C7—C61.506 (2)C8—H8A0.9700
C7—C81.539 (2)C8—H8B0.9700
C7—H7A0.9800C9—C101.488 (3)
C16—H16A0.9300C4—C31.360 (3)
N1—C91.275 (2)C4—H12A0.9300
C12—C131.376 (2)C2—C31.370 (3)
C12—H4A0.9300C2—H2A0.9300
C6—C51.373 (2)C3—H3A0.9300
C6—C11.374 (2)C10—H10A0.9600
C13—C141.371 (2)C10—H10B0.9600
C13—H13A0.9300C10—H10C0.9600
N2—C11—C16120.49 (14)C6—C1—H1B119.5
N2—C11—C12120.89 (14)C2—C1—H1B119.5
C16—C11—C12118.61 (15)C15—C14—C13117.08 (16)
C11—N2—N1120.35 (13)C15—C14—H14A121.5
C11—N2—C7126.29 (14)C13—C14—H14A121.5
N1—N2—C7113.28 (13)C4—C5—C6121.3 (2)
C14—C15—C16123.67 (15)C4—C5—H5A119.4
C14—C15—N3118.79 (15)C6—C5—H5A119.4
C16—C15—N3117.54 (15)C9—C8—C7103.05 (14)
N2—C7—C6112.85 (14)C9—C8—H8A111.2
N2—C7—C8100.85 (13)C7—C8—H8A111.2
C6—C7—C8113.49 (13)C9—C8—H8B111.2
N2—C7—H7A109.8C7—C8—H8B111.2
C6—C7—H7A109.8H8A—C8—H8B109.1
C8—C7—H7A109.8N1—C9—C8114.49 (16)
C15—C16—C11118.59 (15)N1—C9—C10121.42 (18)
C15—C16—H16A120.7C8—C9—C10124.09 (17)
C11—C16—H16A120.7C3—C4—C5120.1 (2)
C9—N1—N2107.90 (15)C3—C4—H12A120.0
C13—C12—C11120.57 (15)C5—C4—H12A120.0
C13—C12—H4A119.7C3—C2—C1119.8 (2)
C11—C12—H4A119.7C3—C2—H2A120.1
C5—C6—C1118.09 (17)C1—C2—H2A120.1
C5—C6—C7120.62 (16)C4—C3—C2119.8 (2)
C1—C6—C7121.27 (16)C4—C3—H3A120.1
C14—C13—C12121.49 (16)C2—C3—H3A120.1
C14—C13—H13A119.3C9—C10—H10A109.5
C12—C13—H13A119.3C9—C10—H10B109.5
O2—N3—O1122.49 (16)H10A—C10—H10B109.5
O2—N3—C15119.20 (15)C9—C10—H10C109.5
O1—N3—C15118.31 (16)H10A—C10—H10C109.5
C6—C1—C2120.93 (19)H10B—C10—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.932.513.245 (2)136
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15N3O2
Mr281.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.0173 (4), 7.9324 (2), 15.4944 (5)
β (°) 99.160 (2)
V3)1458.18 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.18 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10272, 3014, 1648
Rint0.034
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.00
No. of reflections3014
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.932.513.245 (2)136
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. & Quinn, F. R. (1978). J. Med. Chem. 21, 563–567.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245–246.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobczak, H. & Pawlaczyk, J. (1998). Acta Pol. Pharm. 55, 279–283.  CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds