organic compounds
5-(2-Furyl)-3-methyl-1-(3-nitrophenyl)-4,5-dihydro-1H-pyrazole
aEnergy Research Institute Co Ltd, Henan Academy of Sciences, Zhengzhou 450000, People's Republic of China, and bSchool of Chemistry and Biological Engineering, Guilin University of Technology, People's Republic of China
*Correspondence e-mail: junqiangchen2009@126.com
In the title compound, C14H13N3O3, the pyrazoline ring assumes an with the furanyl-bearing C atom at the flap position. The dihedral angle between the furan and nitrobenzene rings is 84.40 (9)°. Weak intermolecular C—H⋯O hydrogen bonding is present in the crystal structure.
Related literature
For applications of pyrazoline derivatives, see: Hatheway et al. (1978); Mahajan et al. (1991); Sobczak & Pawlaczyk (1998).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809031419/xu2580sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809031419/xu2580Isup2.hkl
3-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml). The mixture was stirred for several min at 351 K, furylideneacetone (1 mmol, 0.136 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol, bronze single crystals of (I) were obtained after 3 d.
All H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.97 (methylene), 0.98 (methine) and 0.96 Å (methyl), with Uiso(H)=1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C14H13N3O3 | Z = 2 |
Mr = 271.27 | F(000) = 284 |
Triclinic, P1 | Dx = 1.362 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.2089 (2) Å | Cell parameters from 1598 reflections |
b = 7.8581 (3) Å | θ = 3.5–24.6° |
c = 14.3800 (4) Å | µ = 0.10 mm−1 |
α = 105.764 (2)° | T = 296 K |
β = 97.054 (2)° | Block, bronze |
γ = 96.944 (2)° | 0.31 × 0.15 × 0.10 mm |
V = 661.31 (4) Å3 |
Bruker SMART CCD area-detector diffractometer | 1778 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.036 |
Graphite monochromator | θmax = 26.0°, θmin = 3.5° |
ω scans | h = −7→7 |
9707 measured reflections | k = −8→9 |
2590 independent reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0608P)2] where P = (Fo2 + 2Fc2)/3 |
2590 reflections | (Δ/σ)max = 0.003 |
181 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C14H13N3O3 | γ = 96.944 (2)° |
Mr = 271.27 | V = 661.31 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.2089 (2) Å | Mo Kα radiation |
b = 7.8581 (3) Å | µ = 0.10 mm−1 |
c = 14.3800 (4) Å | T = 296 K |
α = 105.764 (2)° | 0.31 × 0.15 × 0.10 mm |
β = 97.054 (2)° |
Bruker SMART CCD area-detector diffractometer | 1778 reflections with I > 2σ(I) |
9707 measured reflections | Rint = 0.036 |
2590 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.14 e Å−3 |
2590 reflections | Δρmin = −0.21 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O | 0.36743 (18) | 0.34679 (15) | 0.90208 (8) | 0.0586 (3) | |
N1 | 0.1661 (2) | 0.62239 (17) | 0.78604 (10) | 0.0496 (4) | |
N2 | 0.2000 (2) | 0.45740 (16) | 0.72794 (10) | 0.0491 (4) | |
C9 | 0.3755 (2) | 0.4521 (2) | 0.67745 (11) | 0.0429 (4) | |
C14 | 0.5059 (2) | 0.6102 (2) | 0.67820 (11) | 0.0460 (4) | |
H14A | 0.4772 | 0.7211 | 0.7132 | 0.055* | |
C7 | 0.0168 (3) | 0.5942 (2) | 0.83623 (13) | 0.0534 (4) | |
C10 | 0.4224 (3) | 0.2892 (2) | 0.62195 (12) | 0.0546 (4) | |
H10A | 0.3347 | 0.1826 | 0.6191 | 0.066* | |
C4 | 0.2531 (2) | 0.2318 (2) | 0.81601 (12) | 0.0477 (4) | |
C13 | 0.6784 (2) | 0.5987 (2) | 0.62600 (12) | 0.0514 (4) | |
N3 | 0.8105 (2) | 0.7665 (2) | 0.62761 (12) | 0.0680 (5) | |
O1 | 0.9707 (2) | 0.7615 (2) | 0.58611 (11) | 0.0934 (5) | |
C5 | 0.0941 (2) | 0.3072 (2) | 0.75855 (12) | 0.0508 (4) | |
H5A | 0.0138 | 0.2126 | 0.7010 | 0.061* | |
C12 | 0.7298 (3) | 0.4395 (3) | 0.57272 (12) | 0.0611 (5) | |
H12A | 0.8487 | 0.4365 | 0.5391 | 0.073* | |
C6 | −0.0684 (3) | 0.4007 (3) | 0.81836 (14) | 0.0615 (5) | |
H6A | −0.2166 | 0.3686 | 0.7817 | 0.074* | |
H6B | −0.0677 | 0.3706 | 0.8795 | 0.074* | |
C1 | 0.4967 (3) | 0.2476 (3) | 0.94299 (14) | 0.0607 (5) | |
H1B | 0.5924 | 0.2920 | 1.0022 | 0.073* | |
O2 | 0.7571 (3) | 0.9062 (2) | 0.67000 (14) | 0.1046 (6) | |
C11 | 0.5976 (3) | 0.2848 (3) | 0.57136 (13) | 0.0642 (5) | |
H11A | 0.6270 | 0.1748 | 0.5355 | 0.077* | |
C3 | 0.3090 (3) | 0.0707 (2) | 0.80439 (14) | 0.0660 (5) | |
H3A | 0.2550 | −0.0308 | 0.7518 | 0.079* | |
C2 | 0.4665 (3) | 0.0818 (3) | 0.88708 (14) | 0.0673 (5) | |
H2A | 0.5350 | −0.0108 | 0.8992 | 0.081* | |
C8 | −0.0654 (3) | 0.7433 (3) | 0.90245 (15) | 0.0793 (6) | |
H8A | 0.0141 | 0.8556 | 0.9019 | 0.119* | |
H8B | −0.0444 | 0.7329 | 0.9678 | 0.119* | |
H8C | −0.2191 | 0.7381 | 0.8806 | 0.119* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O | 0.0577 (7) | 0.0535 (7) | 0.0622 (8) | 0.0133 (5) | 0.0000 (6) | 0.0156 (6) |
N1 | 0.0513 (8) | 0.0481 (8) | 0.0555 (8) | 0.0152 (6) | 0.0159 (6) | 0.0190 (7) |
N2 | 0.0507 (7) | 0.0414 (7) | 0.0613 (9) | 0.0090 (6) | 0.0178 (6) | 0.0206 (7) |
C9 | 0.0443 (8) | 0.0457 (9) | 0.0417 (9) | 0.0103 (7) | 0.0050 (7) | 0.0172 (7) |
C14 | 0.0459 (8) | 0.0467 (9) | 0.0464 (9) | 0.0077 (7) | 0.0087 (7) | 0.0147 (7) |
C7 | 0.0454 (8) | 0.0673 (11) | 0.0568 (10) | 0.0186 (8) | 0.0109 (8) | 0.0284 (9) |
C10 | 0.0639 (10) | 0.0459 (10) | 0.0528 (10) | 0.0079 (8) | 0.0105 (8) | 0.0125 (8) |
C4 | 0.0474 (8) | 0.0414 (9) | 0.0544 (10) | 0.0009 (7) | 0.0061 (7) | 0.0179 (8) |
C13 | 0.0452 (9) | 0.0591 (10) | 0.0501 (10) | 0.0017 (8) | 0.0074 (7) | 0.0191 (8) |
N3 | 0.0584 (9) | 0.0749 (12) | 0.0685 (10) | −0.0040 (8) | 0.0163 (8) | 0.0210 (9) |
O1 | 0.0729 (9) | 0.1114 (12) | 0.0966 (11) | −0.0083 (8) | 0.0418 (8) | 0.0290 (9) |
C5 | 0.0440 (8) | 0.0488 (9) | 0.0621 (10) | −0.0003 (7) | 0.0046 (7) | 0.0256 (8) |
C12 | 0.0591 (10) | 0.0759 (13) | 0.0516 (11) | 0.0182 (9) | 0.0200 (8) | 0.0159 (9) |
C6 | 0.0403 (8) | 0.0813 (13) | 0.0765 (12) | 0.0102 (8) | 0.0121 (8) | 0.0440 (11) |
C1 | 0.0531 (10) | 0.0751 (13) | 0.0613 (11) | 0.0207 (9) | 0.0076 (8) | 0.0285 (10) |
O2 | 0.0990 (12) | 0.0602 (9) | 0.1522 (16) | −0.0069 (8) | 0.0581 (11) | 0.0187 (10) |
C11 | 0.0777 (12) | 0.0602 (11) | 0.0550 (11) | 0.0230 (10) | 0.0176 (10) | 0.0093 (9) |
C3 | 0.0813 (13) | 0.0457 (10) | 0.0690 (13) | 0.0129 (9) | 0.0027 (10) | 0.0164 (9) |
C2 | 0.0761 (12) | 0.0621 (13) | 0.0761 (13) | 0.0288 (10) | 0.0118 (10) | 0.0333 (11) |
C8 | 0.0778 (13) | 0.0996 (16) | 0.0771 (14) | 0.0422 (12) | 0.0352 (11) | 0.0316 (12) |
O—C4 | 1.3689 (18) | N3—O2 | 1.208 (2) |
O—C1 | 1.372 (2) | N3—O1 | 1.2209 (19) |
N1—C7 | 1.277 (2) | C5—C6 | 1.532 (2) |
N1—N2 | 1.3940 (18) | C5—H5A | 0.9800 |
N2—C9 | 1.3803 (19) | C12—C11 | 1.376 (3) |
N2—C5 | 1.4784 (19) | C12—H12A | 0.9300 |
C9—C14 | 1.396 (2) | C6—H6A | 0.9700 |
C9—C10 | 1.397 (2) | C6—H6B | 0.9700 |
C14—C13 | 1.379 (2) | C1—C2 | 1.309 (2) |
C14—H14A | 0.9300 | C1—H1B | 0.9300 |
C7—C8 | 1.482 (2) | C11—H11A | 0.9300 |
C7—C6 | 1.489 (3) | C3—C2 | 1.420 (2) |
C10—C11 | 1.380 (2) | C3—H3A | 0.9300 |
C10—H10A | 0.9300 | C2—H2A | 0.9300 |
C4—C3 | 1.325 (2) | C8—H8A | 0.9600 |
C4—C5 | 1.488 (2) | C8—H8B | 0.9600 |
C13—C12 | 1.375 (2) | C8—H8C | 0.9600 |
C13—N3 | 1.459 (2) | ||
C4—O—C1 | 105.97 (13) | C4—C5—H5A | 110.0 |
C7—N1—N2 | 108.34 (13) | C6—C5—H5A | 110.0 |
C9—N2—N1 | 118.80 (12) | C13—C12—C11 | 117.03 (16) |
C9—N2—C5 | 125.31 (13) | C13—C12—H12A | 121.5 |
N1—N2—C5 | 111.64 (12) | C11—C12—H12A | 121.5 |
N2—C9—C14 | 120.55 (14) | C7—C6—C5 | 103.00 (13) |
N2—C9—C10 | 120.96 (14) | C7—C6—H6A | 111.2 |
C14—C9—C10 | 118.47 (14) | C5—C6—H6A | 111.2 |
C13—C14—C9 | 118.59 (15) | C7—C6—H6B | 111.2 |
C13—C14—H14A | 120.7 | C5—C6—H6B | 111.2 |
C9—C14—H14A | 120.7 | H6A—C6—H6B | 109.1 |
N1—C7—C8 | 121.87 (16) | C2—C1—O | 110.60 (15) |
N1—C7—C6 | 113.46 (15) | C2—C1—H1B | 124.7 |
C8—C7—C6 | 124.64 (16) | O—C1—H1B | 124.7 |
C11—C10—C9 | 120.67 (16) | C12—C11—C10 | 121.50 (17) |
C11—C10—H10A | 119.7 | C12—C11—H11A | 119.3 |
C9—C10—H10A | 119.7 | C10—C11—H11A | 119.3 |
C3—C4—O | 109.50 (15) | C4—C3—C2 | 107.27 (16) |
C3—C4—C5 | 134.10 (17) | C4—C3—H3A | 126.4 |
O—C4—C5 | 116.37 (14) | C2—C3—H3A | 126.4 |
C12—C13—C14 | 123.72 (16) | C1—C2—C3 | 106.65 (16) |
C12—C13—N3 | 119.04 (15) | C1—C2—H2A | 126.7 |
C14—C13—N3 | 117.24 (15) | C3—C2—H2A | 126.7 |
O2—N3—O1 | 122.13 (17) | C7—C8—H8A | 109.5 |
O2—N3—C13 | 118.76 (15) | C7—C8—H8B | 109.5 |
O1—N3—C13 | 119.11 (17) | H8A—C8—H8B | 109.5 |
N2—C5—C4 | 112.93 (12) | C7—C8—H8C | 109.5 |
N2—C5—C6 | 100.18 (13) | H8A—C8—H8C | 109.5 |
C4—C5—C6 | 113.50 (14) | H8B—C8—H8C | 109.5 |
N2—C5—H5A | 110.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···O1i | 0.93 | 2.51 | 3.311 (2) | 144 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H13N3O3 |
Mr | 271.27 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.2089 (2), 7.8581 (3), 14.3800 (4) |
α, β, γ (°) | 105.764 (2), 97.054 (2), 96.944 (2) |
V (Å3) | 661.31 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.31 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9707, 2590, 1778 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.121, 1.10 |
No. of reflections | 2590 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.21 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···O1i | 0.93 | 2.51 | 3.311 (2) | 144 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
References
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hatheway, G. J., Hansch, C., Kim, K. H., Milstein, S. R., Schmidt, C. L., Smith, R. N. & Quinn, F. R. (1978). J. Med. Chem. 21, 563–567. CrossRef CAS PubMed Web of Science Google Scholar
Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245–246. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sobczak, H. & Pawlaczyk, J. (1998). Acta Pol. Pharm. 55, 279–283. CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The derivatives of pyrazoline are mostly used in medicine, for example as antitumor (Hatheway et al., 1978), analgesic (Sobczak & Pawlaczyk, 1998), and antimicrobial (Mahajan et al., 1991) agents. As part of our work, the new title compound (I) are synthesized in our group.
The pyrazoline ring assumes an envelope conformation with the furanyl-bearing carbon atom at the flap position (Fig. 1). Intermolecular weak C—H···O hydrogen bonding is present in the crystal structure. (Fig. 2 and Table 1).