organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Butan-2-yl­­idene)-2-(2-nitro­phen­yl)hydrazine

aKey Laboratory of Surface and Interface Science of Henan School of Materials & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: yinck@263.net

(Received 6 August 2009; accepted 10 August 2009; online 15 August 2009)

Crystals of the title compound, C10H13N3O2, were obtained from a condensation reaction of butan-2-one and 1-(2-nitro­phen­yl)hydrazine. The mol­ecule exhibits a nearly coplanar structure, except for the methyl and methyl­ene H atoms, the largest deviations from the mean plane defined by all non-H atoms, except for the nitro group, being 0.120 (2) Å for one of the nitro O atoms. Intra­molecular N—H⋯O hydrogen bonding helps to establish the mol­ecular configuration.

Related literature

For applications of Schiff base compounds, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3O2

  • Mr = 207.23

  • Monoclinic, P 21 /c

  • a = 7.3079 (11) Å

  • b = 10.2150 (17) Å

  • c = 14.763 (2) Å

  • β = 100.058 (9)°

  • V = 1085.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.21 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7304 measured reflections

  • 2116 independent reflections

  • 1099 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.159

  • S = 0.93

  • 2116 reflections

  • 141 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.889 (16) 1.969 (16) 2.604 (3) 127.2 (14)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our in the study of the coordination chemistry of Schiff bases, we synthesized the title compound and determined its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The molecules is roughly planar, with the largest deviations from the mean plane defined by all non-H atoms, except the nitro group, being -0.120 (2) for atom O2.

Intramolecular N—H···O hydrogen bond is observed in compound (I), and this helps to stabilize the configuration of the molecule.

Related literature top

For applications of Schiff base compounds, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml). The mixture was stirred for several min at 351 K, then butan-2-one (1 mmol, 0.72 g) in ethanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol, red single crystals were obtained after 3 d.

Refinement top

Imino H atom was located in a difference Fourier map and positional parameters were refined with a fixed isotropic thermal parameter of 0.08 Å2. Other H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 Å (methyl), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonding is shown in dashed line.
1-(Butan-2-ylidene)-2-(2-nitrophenyl)hydrazine top
Crystal data top
C10H13N3O2F(000) = 440
Mr = 207.23Dx = 1.268 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1572 reflections
a = 7.3079 (11) Åθ = 2.4–26.0°
b = 10.2150 (17) ŵ = 0.09 mm1
c = 14.763 (2) ÅT = 296 K
β = 100.058 (9)°Block, red
V = 1085.1 (3) Å30.28 × 0.21 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1099 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 26.0°, θmin = 2.4°
ω scansh = 98
7304 measured reflectionsk = 1112
2116 independent reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0917P)2]
where P = (Fo2 + 2Fc2)/3
2116 reflections(Δ/σ)max = 0.010
141 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C10H13N3O2V = 1085.1 (3) Å3
Mr = 207.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3079 (11) ŵ = 0.09 mm1
b = 10.2150 (17) ÅT = 296 K
c = 14.763 (2) Å0.28 × 0.21 × 0.11 mm
β = 100.058 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1099 reflections with I > 2σ(I)
7304 measured reflectionsRint = 0.024
2116 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.17 e Å3
2116 reflectionsΔρmin = 0.15 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3024 (2)1.04656 (17)0.09960 (11)0.0674 (5)
C10.2088 (2)0.89169 (19)0.01835 (13)0.0551 (5)
N20.2496 (2)1.01728 (17)0.00803 (12)0.0678 (5)
C20.2183 (3)0.79113 (19)0.04780 (12)0.0621 (6)
H20.24950.81220.10990.075*
C60.1570 (2)0.85236 (19)0.11104 (12)0.0587 (5)
C50.1221 (3)0.7221 (2)0.13432 (14)0.0690 (6)
H50.08890.69850.19590.083*
N30.1382 (3)0.9459 (2)0.18488 (14)0.0817 (6)
C30.1830 (3)0.66460 (19)0.02310 (14)0.0698 (6)
H30.19070.60070.06850.084*
C40.1358 (3)0.6288 (2)0.06817 (15)0.0732 (6)
H40.11360.54150.08410.088*
O20.1590 (3)1.0630 (2)0.16759 (12)0.1089 (7)
C70.3445 (3)1.1663 (2)0.11902 (16)0.0713 (6)
O10.1019 (3)0.90665 (19)0.26427 (11)0.1204 (7)
C80.4002 (3)1.2013 (2)0.21782 (18)0.0938 (8)
H8A0.52401.23870.22660.113*
H8B0.31661.26870.23250.113*
C100.3419 (3)1.2749 (2)0.05076 (18)0.0974 (8)
H10A0.42231.25310.00800.146*
H10B0.38431.35430.08240.146*
H10C0.21751.28690.01800.146*
C90.4004 (4)1.0931 (3)0.28360 (19)0.1200 (10)
H9A0.28031.05230.27400.180*
H9B0.42861.12660.34520.180*
H9C0.49261.02980.27450.180*
H2A0.240 (3)1.0806 (15)0.0338 (11)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0685 (11)0.0696 (12)0.0636 (12)0.0003 (9)0.0106 (8)0.0109 (9)
C10.0509 (11)0.0590 (12)0.0556 (12)0.0053 (9)0.0102 (8)0.0030 (10)
N20.0764 (12)0.0608 (12)0.0652 (13)0.0025 (9)0.0095 (9)0.0037 (8)
C20.0672 (13)0.0693 (14)0.0485 (11)0.0010 (10)0.0062 (9)0.0024 (10)
C60.0557 (11)0.0734 (14)0.0468 (11)0.0076 (10)0.0081 (8)0.0083 (10)
C50.0601 (13)0.0917 (17)0.0549 (12)0.0007 (11)0.0087 (10)0.0156 (12)
N30.0826 (13)0.1009 (16)0.0613 (13)0.0115 (11)0.0116 (9)0.0134 (12)
C30.0758 (15)0.0658 (14)0.0680 (14)0.0028 (11)0.0126 (11)0.0065 (11)
C40.0764 (15)0.0667 (14)0.0777 (16)0.0052 (11)0.0169 (12)0.0077 (12)
O20.1446 (17)0.0932 (13)0.0870 (13)0.0062 (12)0.0148 (11)0.0327 (10)
C70.0523 (12)0.0700 (15)0.0934 (17)0.0034 (11)0.0173 (11)0.0162 (13)
O10.1572 (18)0.1516 (17)0.0490 (11)0.0180 (13)0.0086 (10)0.0100 (10)
C80.0826 (16)0.0953 (18)0.106 (2)0.0056 (13)0.0236 (14)0.0338 (16)
C100.0861 (18)0.0704 (16)0.136 (2)0.0024 (13)0.0191 (15)0.0039 (15)
C90.135 (2)0.144 (3)0.0799 (17)0.036 (2)0.0144 (16)0.0224 (18)
Geometric parameters (Å, º) top
N1—C71.282 (2)C3—C41.380 (3)
N1—N21.372 (2)C3—H30.9300
C1—N21.359 (2)C4—H40.9300
C1—C61.413 (3)C7—C101.496 (3)
C1—C21.411 (2)C7—C81.488 (3)
N2—H2A0.888 (9)C8—C91.471 (3)
C2—C31.355 (2)C8—H8A0.9700
C2—H20.9300C8—H8B0.9700
C6—C51.387 (3)C10—H10A0.9600
C6—N31.438 (2)C10—H10B0.9600
C5—C41.356 (3)C10—H10C0.9600
C5—H50.9300C9—H9A0.9600
N3—O11.223 (2)C9—H9B0.9600
N3—O21.227 (2)C9—H9C0.9600
C7—N1—N2116.33 (18)C5—C4—H4120.3
N2—C1—C6123.67 (17)C3—C4—H4120.3
N2—C1—C2120.49 (18)N1—C7—C10125.6 (2)
C6—C1—C2115.84 (18)N1—C7—C8117.5 (2)
C1—N2—N1119.87 (16)C10—C7—C8116.8 (2)
C1—N2—H2A120.1 (14)C9—C8—C7115.8 (2)
N1—N2—H2A120.0 (14)C9—C8—H8A108.3
C3—C2—C1121.61 (18)C7—C8—H8A108.3
C3—C2—H2119.2C9—C8—H8B108.3
C1—C2—H2119.2C7—C8—H8B108.3
C5—C6—C1121.30 (17)H8A—C8—H8B107.4
C5—C6—N3117.42 (19)C7—C10—H10A109.5
C1—C6—N3121.28 (19)C7—C10—H10B109.5
C4—C5—C6120.57 (19)H10A—C10—H10B109.5
C4—C5—H5119.7C7—C10—H10C109.5
C6—C5—H5119.7H10A—C10—H10C109.5
O1—N3—O2121.1 (2)H10B—C10—H10C109.5
O1—N3—C6119.0 (2)C8—C9—H9A109.5
O2—N3—C6119.9 (2)C8—C9—H9B109.5
C2—C3—C4121.22 (18)H9A—C9—H9B109.5
C2—C3—H3119.4C8—C9—H9C109.5
C4—C3—H3119.4H9A—C9—H9C109.5
C5—C4—C3119.5 (2)H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.89 (2)1.97 (2)2.604 (3)127 (1)

Experimental details

Crystal data
Chemical formulaC10H13N3O2
Mr207.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.3079 (11), 10.2150 (17), 14.763 (2)
β (°) 100.058 (9)
V3)1085.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.21 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7304, 2116, 1099
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.159, 0.93
No. of reflections2116
No. of parameters141
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.889 (16)1.969 (16)2.604 (3)127.2 (14)
 

Acknowledgements

The authors would like to express their deep appreciation to the start-up Fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry (No. 2005001) and the Fund for Natural Scientific Research of Zhengzhou University of Light Industry, China (000455).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds