organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-(2-Fur­yl)but-3-en-2-yl­­idene]-2-(2-nitro­phen­yl)hydrazine

aKey Laboratory of Surface and Interface Science of Henan, School of Materials & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: yinck@263.net

(Received 6 August 2009; accepted 11 August 2009; online 15 August 2009)

In the title Schiff base compound, C14H13N3O3, the furan and benzene rings are oriented at a dihedral angle of 10.24 (13)°. Intra­molecular N—H⋯O hydrogen bonding is observed between the imino and nitro groups.

Related literature

For applications of Schiff base compounds, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O3

  • Mr = 271.27

  • Triclinic, [P \overline 1]

  • a = 8.2261 (2) Å

  • b = 9.0200 (2) Å

  • c = 9.1027 (2) Å

  • α = 89.166 (2)°

  • β = 77.549 (2)°

  • γ = 80.250 (2)°

  • V = 649.83 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.1 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 9374 measured reflections

  • 2687 independent reflections

  • 1285 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.136

  • S = 0.90

  • 2687 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.86 2.00 2.611 (2) 127

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

4-Nitrophenylhydrazine has applications in organic synthesis, and some of its derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). As part of our work, the title compound (I) is synthesized in our group, and its structure is reported here (Fig. 1).

The molecular structure is non-planar, there is a dihedral angle of 9.19 (9)° between the benzene ring and the N2/N1/C7/C6/C5 plane, while the N2/N1/C7/C6/C5 planar and the furyl ring is nearly planar, making a dihedral angle of 4.26 (11)°. The furan and benzene rings are oriented at a dihedral angle of 10.24 (13)°. Intramolecular N—H···O hydrogen bonding is present between imino and nitro groups (Table 1).

Related literature top

For applications of Schiff base compounds, see: Okabe et al. (1993).

Experimental top

2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml). The mixture was stirred for several min at 351 K, then the furylideneacetone (1 mmol, 0.136 g) in ethanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol, red single crystals of (I) were obtained after 3 d.

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.96 Å (methyl) and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C,N) for the others.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown in dashed line.
1-[4-(2-Furyl)but-3-en-2-ylidene]-2-(2-nitrophenyl)hydrazine top
Crystal data top
C14H13N3O3Z = 2
Mr = 271.27F(000) = 284
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2261 (2) ÅCell parameters from 1117 reflections
b = 9.0200 (2) Åθ = 2.3–26.5°
c = 9.1027 (2) ŵ = 0.1 mm1
α = 89.166 (2)°T = 296 K
β = 77.549 (2)°Plate, red
γ = 80.250 (2)°0.12 × 0.10 × 0.07 mm
V = 649.83 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1285 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.5°, θmin = 2.3°
ω scansh = 1010
9374 measured reflectionsk = 1110
2687 independent reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0668P)2]
where P = (Fo2 + 2Fc2)/3
2687 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H13N3O3γ = 80.250 (2)°
Mr = 271.27V = 649.83 (3) Å3
Triclinic, P1Z = 2
a = 8.2261 (2) ÅMo Kα radiation
b = 9.0200 (2) ŵ = 0.1 mm1
c = 9.1027 (2) ÅT = 296 K
α = 89.166 (2)°0.12 × 0.10 × 0.07 mm
β = 77.549 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1285 reflections with I > 2σ(I)
9374 measured reflectionsRint = 0.039
2687 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.90Δρmax = 0.19 e Å3
2687 reflectionsΔρmin = 0.17 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.15950 (19)0.59694 (17)0.52496 (19)0.0473 (5)
H2A0.19720.50440.54030.057*
N10.2372 (2)0.66928 (18)0.40298 (19)0.0470 (5)
O0.58672 (18)0.12781 (16)0.35428 (17)0.0599 (5)
C90.0217 (2)0.6737 (2)0.6216 (2)0.0417 (5)
C140.0559 (2)0.6146 (2)0.7579 (2)0.0453 (6)
N30.0014 (2)0.4629 (2)0.8002 (2)0.0556 (5)
C70.3716 (2)0.5962 (2)0.3164 (2)0.0461 (6)
O10.0875 (2)0.41053 (18)0.9101 (2)0.0751 (5)
C60.4454 (2)0.4401 (2)0.3302 (2)0.0481 (6)
H6A0.39270.38660.40930.058*
O20.1291 (2)0.38750 (17)0.72528 (19)0.0727 (5)
C100.0499 (3)0.8183 (2)0.5884 (3)0.0519 (6)
H10A0.00670.85940.49690.062*
C30.7845 (3)0.1262 (2)0.1462 (3)0.0581 (7)
H3A0.85260.15720.06000.070*
C40.6560 (2)0.2129 (2)0.2398 (2)0.0480 (6)
C110.1819 (3)0.9011 (2)0.6869 (3)0.0606 (7)
H11A0.22630.99740.66150.073*
C50.5839 (2)0.3679 (2)0.2372 (2)0.0486 (6)
H5A0.63900.42490.16280.058*
C80.4503 (3)0.6843 (2)0.1883 (3)0.0645 (7)
H8A0.38150.78160.18840.097*
H8B0.45890.63190.09520.097*
H8C0.56100.69610.19900.097*
C130.1892 (3)0.7005 (3)0.8576 (3)0.0588 (7)
H13A0.23680.66000.94790.071*
C120.2507 (3)0.8442 (3)0.8237 (3)0.0633 (7)
H12A0.33760.90290.89170.076*
C20.7968 (3)0.0203 (3)0.2030 (3)0.0648 (7)
H2B0.87400.10460.16150.078*
C10.6766 (3)0.0147 (3)0.3274 (3)0.0659 (7)
H1B0.65630.09650.38780.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0478 (10)0.0362 (10)0.0488 (12)0.0004 (8)0.0038 (9)0.0049 (9)
N10.0481 (10)0.0431 (10)0.0440 (11)0.0059 (8)0.0013 (9)0.0049 (9)
O0.0627 (10)0.0535 (10)0.0539 (11)0.0022 (8)0.0025 (8)0.0052 (8)
C90.0403 (11)0.0419 (12)0.0415 (14)0.0082 (9)0.0047 (10)0.0008 (10)
C140.0456 (12)0.0465 (13)0.0440 (14)0.0111 (10)0.0078 (11)0.0050 (11)
N30.0626 (13)0.0520 (12)0.0534 (13)0.0170 (10)0.0103 (11)0.0130 (10)
C70.0441 (12)0.0452 (13)0.0458 (14)0.0076 (10)0.0023 (10)0.0006 (11)
O10.0893 (12)0.0741 (12)0.0618 (12)0.0307 (10)0.0041 (10)0.0247 (9)
C60.0484 (12)0.0458 (13)0.0460 (14)0.0057 (10)0.0030 (11)0.0015 (11)
O20.0690 (11)0.0546 (10)0.0825 (13)0.0023 (8)0.0015 (10)0.0187 (9)
C100.0535 (13)0.0425 (13)0.0514 (15)0.0020 (10)0.0017 (11)0.0051 (11)
C30.0548 (14)0.0449 (14)0.0628 (17)0.0019 (11)0.0080 (12)0.0013 (12)
C40.0465 (13)0.0467 (13)0.0480 (15)0.0096 (10)0.0028 (11)0.0033 (12)
C110.0580 (14)0.0459 (14)0.0684 (18)0.0011 (11)0.0007 (13)0.0017 (13)
C50.0470 (12)0.0457 (13)0.0499 (15)0.0082 (10)0.0034 (11)0.0021 (11)
C80.0672 (15)0.0504 (14)0.0618 (17)0.0025 (12)0.0106 (13)0.0065 (13)
C130.0563 (14)0.0671 (16)0.0476 (15)0.0122 (12)0.0020 (12)0.0023 (13)
C120.0538 (14)0.0635 (16)0.0607 (17)0.0011 (12)0.0072 (12)0.0124 (14)
C20.0687 (16)0.0495 (15)0.0655 (18)0.0015 (12)0.0003 (14)0.0011 (13)
C10.0757 (17)0.0452 (14)0.0707 (18)0.0023 (12)0.0089 (15)0.0070 (13)
Geometric parameters (Å, º) top
N2—C91.364 (2)C10—H10A0.9300
N2—N11.372 (2)C3—C41.344 (3)
N2—H2A0.8600C3—C21.407 (3)
N1—C71.293 (2)C3—H3A0.9300
O—C41.367 (2)C4—C51.425 (3)
O—C11.367 (2)C11—C121.382 (3)
C9—C101.394 (3)C11—H11A0.9300
C9—C141.409 (3)C5—H5A0.9300
C14—C131.389 (3)C8—H8A0.9600
C14—N31.440 (3)C8—H8B0.9600
N3—O11.232 (2)C8—H8C0.9600
N3—O21.238 (2)C13—C121.366 (3)
C7—C61.451 (3)C13—H13A0.9300
C7—C81.494 (3)C12—H12A0.9300
C6—C51.337 (2)C2—C11.328 (3)
C6—H6A0.9300C2—H2B0.9300
C10—C111.366 (3)C1—H1B0.9300
C9—N2—N1119.11 (16)C3—C4—C5132.1 (2)
C9—N2—H2A120.4O—C4—C5118.40 (18)
N1—N2—H2A120.4C10—C11—C12121.2 (2)
C7—N1—N2118.00 (17)C10—C11—H11A119.4
C4—O—C1106.09 (16)C12—C11—H11A119.4
N2—C9—C10120.34 (19)C6—C5—C4127.0 (2)
N2—C9—C14123.30 (18)C6—C5—H5A116.5
C10—C9—C14116.36 (18)C4—C5—H5A116.5
C13—C14—C9121.3 (2)C7—C8—H8A109.5
C13—C14—N3117.0 (2)C7—C8—H8B109.5
C9—C14—N3121.75 (18)H8A—C8—H8B109.5
O1—N3—O2121.45 (19)C7—C8—H8C109.5
O1—N3—C14118.91 (19)H8A—C8—H8C109.5
O2—N3—C14119.64 (18)H8B—C8—H8C109.5
N1—C7—C6126.3 (2)C12—C13—C14120.4 (2)
N1—C7—C8114.50 (19)C12—C13—H13A119.8
C6—C7—C8119.16 (18)C14—C13—H13A119.8
C5—C6—C7124.5 (2)C13—C12—C11119.0 (2)
C5—C6—H6A117.7C13—C12—H12A120.5
C7—C6—H6A117.7C11—C12—H12A120.5
C11—C10—C9121.6 (2)C1—C2—C3106.61 (19)
C11—C10—H10A119.2C1—C2—H2B126.7
C9—C10—H10A119.2C3—C2—H2B126.7
C4—C3—C2107.2 (2)C2—C1—O110.6 (2)
C4—C3—H3A126.4C2—C1—H1B124.7
C2—C3—H3A126.4O—C1—H1B124.7
C3—C4—O109.46 (18)
C9—N2—N1—C7177.25 (18)C14—C9—C10—C113.7 (3)
N1—N2—C9—C106.7 (3)C2—C3—C4—O0.4 (3)
N1—N2—C9—C14173.15 (18)C2—C3—C4—C5178.4 (2)
N2—C9—C14—C13175.70 (19)C1—O—C4—C30.3 (3)
C10—C9—C14—C134.2 (3)C1—O—C4—C5178.63 (19)
N2—C9—C14—N34.5 (3)C9—C10—C11—C120.4 (4)
C10—C9—C14—N3175.66 (18)C7—C6—C5—C4175.9 (2)
C13—C14—N3—O19.4 (3)C3—C4—C5—C6173.7 (2)
C9—C14—N3—O1170.41 (19)O—C4—C5—C65.0 (3)
C13—C14—N3—O2171.21 (19)C9—C14—C13—C121.5 (3)
C9—C14—N3—O28.9 (3)N3—C14—C13—C12178.4 (2)
N2—N1—C7—C63.5 (3)C14—C13—C12—C112.0 (4)
N2—N1—C7—C8178.71 (18)C10—C11—C12—C132.5 (4)
N1—C7—C6—C5179.3 (2)C4—C3—C2—C10.2 (3)
C8—C7—C6—C51.6 (3)C3—C2—C1—O0.0 (3)
N2—C9—C10—C11176.2 (2)C4—O—C1—C20.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.862.002.611 (2)127

Experimental details

Crystal data
Chemical formulaC14H13N3O3
Mr271.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2261 (2), 9.0200 (2), 9.1027 (2)
α, β, γ (°)89.166 (2), 77.549 (2), 80.250 (2)
V3)649.83 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.1
Crystal size (mm)0.12 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9374, 2687, 1285
Rint0.039
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 0.90
No. of reflections2687
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.862.002.611 (2)127
 

Acknowledgements

The authors would like to express their deep appreciation to the start-up fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry (No. 2005001) and the Fund for Natural Scientific Research of Zhengzhou University of Light Industry, China (000455).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds