organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7,9-Di­allyl-6-methyl-7H-1,2,4-triazolo[4,3-b][1,2,4]triazepin-8(9H)-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bInstitute of Nanomaterials and Nanotechnology, Avenue de l'Armée Royale, Madinat El Irfane, 10100 Rabat, Morocco, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 August 2009; accepted 8 August 2009; online 15 August 2009)

The title compound, C12H15N5O, features a triazolyl ring fused with a seven-membered triazepinyl ring; the latter ring adopts a boat conformation with the allyl-bearing C atom as the prow and the C and N fused-ring atoms as the stern.

Related literature

Triazepines are used in the treatment of neuronal disorders. They are also the reacta­nts for the synthesis of other heterocyclic compounds; see, for example: Essassi et al. (1977[Essassi, E. M., Lavergne, J. P. & Vialleffont, P. (1977). Tetrahedron, 33, 2807-2812.]); Richter & Sheefelot (1991[Richter, P. & Sheefelot, U. (1991). Pharmazie, 46, 701-705.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N5O

  • Mr = 245.29

  • Monoclinic, P 21 /n

  • a = 7.4674 (3) Å

  • b = 8.3398 (3) Å

  • c = 20.2214 (6) Å

  • β = 95.174 (2)°

  • V = 1254.19 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.3 mm

Data collection
  • Bruker APEX2 diffractometer

  • Absorption correction: none

  • 11394 measured reflections

  • 2435 independent reflections

  • 1600 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.176

  • S = 1.03

  • 2435 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

Triazepines are used in the treatment of neuronal disorders. They are also the reactants for the synthesis of other heterocyclic compounds; see, for example: Essassi et al. (1977); Richter & Sheefelot (1991).

Experimental top

To a solution of 6-methyl-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazepin-8(9H)-one (1 g, 6 mmol) in N,N-dimethylformamide (20 ml), potassium carbonate (1.26 g, 9 mmol), allyl bromide (0.8 ml, 9 mmol) and a catalytic amount of tetrabutyammonium bromide were added. The mixture was stirred for 12 h. After the completion of the reaction (as monitored by TLC), the solid material was removed by filtration and the solvent evaporated under vacuum. Dichloromethane (20 ml) was added and the solution filtered. The solvent was removed and the product purified by column chromatography (30% ethyl acetate/hexane) to afford colorless crystals in 30% yield; m.p. 423 K. The formulation was established by proton and carbon-13 NMR spectroscopy in DMSO-d6.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H15N5O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
7,9-Diallyl-6-methyl-7H-1,2,4-triazolo[4,3-b][1,2,4]triazepin-8(9H)-one top
Crystal data top
C12H15N5OF(000) = 520
Mr = 245.29Dx = 1.299 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2666 reflections
a = 7.4674 (3) Åθ = 2.6–23.2°
b = 8.3398 (3) ŵ = 0.09 mm1
c = 20.2214 (6) ÅT = 293 K
β = 95.174 (2)°Block, colorless
V = 1254.19 (8) Å30.3 × 0.3 × 0.3 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1600 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.9°, θmin = 2.0°
ϕ and ω scansh = 99
11394 measured reflectionsk = 1010
2435 independent reflectionsl = 2224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1011P)2 + 0.1814P]
where P = (Fo2 + 2Fc2)/3
2435 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12H15N5OV = 1254.19 (8) Å3
Mr = 245.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4674 (3) ŵ = 0.09 mm1
b = 8.3398 (3) ÅT = 293 K
c = 20.2214 (6) Å0.3 × 0.3 × 0.3 mm
β = 95.174 (2)°
Data collection top
Bruker APEXII
diffractometer
1600 reflections with I > 2σ(I)
11394 measured reflectionsRint = 0.041
2435 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.03Δρmax = 0.62 e Å3
2435 reflectionsΔρmin = 0.31 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6016 (3)0.9072 (2)0.62240 (9)0.0504 (5)
N10.6575 (3)0.4291 (2)0.67475 (9)0.0372 (5)
N20.6714 (3)0.4126 (2)0.60624 (9)0.0346 (5)
N30.7253 (3)0.2937 (3)0.51391 (10)0.0486 (6)
N40.7390 (3)0.4593 (3)0.50437 (9)0.0424 (6)
N50.7149 (3)0.6893 (2)0.57403 (9)0.0360 (5)
C10.5941 (3)0.7634 (3)0.61190 (10)0.0353 (6)
C20.4588 (3)0.6533 (3)0.63974 (10)0.0328 (6)
H20.41120.58340.60330.039*
C30.3002 (3)0.7447 (3)0.66310 (12)0.0460 (7)
H3A0.34020.80570.70250.055*
H3B0.25600.82000.62890.055*
C40.1488 (4)0.6348 (4)0.67861 (16)0.0600 (8)
H40.11270.55870.64650.072*
C50.0662 (5)0.6348 (5)0.73019 (19)0.0877 (12)
H5A0.09690.70840.76390.105*
H5B0.02560.56130.73460.105*
C60.5616 (3)0.5471 (3)0.69075 (10)0.0338 (6)
C70.5614 (4)0.5818 (3)0.76328 (11)0.0480 (7)
H7A0.63490.50440.78820.072*
H7B0.44060.57590.77580.072*
H7C0.60860.68740.77240.072*
C80.6870 (3)0.2708 (3)0.57428 (13)0.0433 (6)
H80.67220.17070.59330.052*
C90.7056 (3)0.5264 (3)0.56022 (11)0.0334 (6)
C100.8431 (3)0.7867 (3)0.53946 (12)0.0449 (7)
H10A0.94210.71910.52860.054*
H10B0.89200.87040.56920.054*
C110.7587 (4)0.8618 (3)0.47735 (13)0.0519 (7)
H110.67020.93880.48130.062*
C120.8000 (5)0.8273 (4)0.41876 (16)0.0779 (11)
H12A0.88800.75090.41300.093*
H12B0.74200.87880.38200.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0657 (13)0.0282 (11)0.0585 (11)0.0048 (9)0.0122 (9)0.0007 (8)
N10.0448 (12)0.0352 (12)0.0313 (10)0.0009 (10)0.0013 (8)0.0048 (8)
N20.0407 (12)0.0290 (11)0.0341 (10)0.0007 (9)0.0037 (8)0.0025 (8)
N30.0564 (15)0.0419 (14)0.0482 (13)0.0010 (11)0.0084 (11)0.0081 (10)
N40.0485 (13)0.0417 (13)0.0376 (11)0.0001 (10)0.0073 (9)0.0018 (9)
N50.0391 (12)0.0314 (12)0.0381 (10)0.0050 (9)0.0063 (9)0.0049 (8)
C10.0424 (15)0.0303 (14)0.0327 (12)0.0003 (11)0.0005 (10)0.0010 (10)
C20.0363 (13)0.0296 (13)0.0324 (12)0.0009 (10)0.0016 (10)0.0014 (9)
C30.0504 (17)0.0422 (15)0.0461 (14)0.0071 (13)0.0087 (12)0.0053 (11)
C40.0377 (16)0.081 (2)0.0619 (18)0.0146 (15)0.0103 (13)0.0091 (16)
C50.066 (2)0.106 (3)0.093 (3)0.009 (2)0.018 (2)0.018 (2)
C60.0360 (14)0.0328 (13)0.0323 (12)0.0049 (11)0.0018 (10)0.0028 (10)
C70.0541 (17)0.0556 (18)0.0340 (13)0.0011 (14)0.0022 (11)0.0019 (11)
C80.0489 (16)0.0299 (14)0.0510 (15)0.0011 (12)0.0038 (12)0.0002 (11)
C90.0323 (13)0.0331 (14)0.0342 (12)0.0008 (10)0.0004 (9)0.0016 (10)
C100.0443 (16)0.0436 (16)0.0475 (14)0.0111 (13)0.0080 (12)0.0063 (11)
C110.0567 (18)0.0493 (18)0.0519 (16)0.0001 (14)0.0166 (13)0.0142 (13)
C120.100 (3)0.079 (3)0.0560 (19)0.009 (2)0.0132 (18)0.0164 (17)
Geometric parameters (Å, º) top
O1—C11.218 (3)C3—H3B0.9700
N1—C61.276 (3)C4—C51.259 (4)
N1—N21.405 (3)C4—H40.9300
N2—C81.358 (3)C5—H5A0.9300
N2—C91.369 (3)C5—H5B0.9300
N3—C81.293 (3)C6—C71.495 (3)
N3—N41.400 (3)C7—H7A0.9600
N4—C91.304 (3)C7—H7B0.9600
N5—C11.381 (3)C7—H7C0.9600
N5—C91.388 (3)C8—H80.9300
N5—C101.479 (3)C10—C111.491 (4)
C1—C21.511 (3)C10—H10A0.9700
C2—C61.514 (3)C10—H10B0.9700
C2—C31.519 (3)C11—C121.283 (4)
C2—H20.9800C11—H110.9300
C3—C41.510 (4)C12—H12A0.9300
C3—H3A0.9700C12—H12B0.9300
C6—N1—N2114.74 (18)H5A—C5—H5B120.0
C8—N2—C9104.5 (2)N1—C6—C7116.6 (2)
C8—N2—N1124.87 (19)N1—C6—C2122.7 (2)
C9—N2—N1129.60 (19)C7—C6—C2120.7 (2)
C8—N3—N4107.47 (19)C6—C7—H7A109.5
C9—N4—N3106.37 (19)C6—C7—H7B109.5
C1—N5—C9121.80 (19)H7A—C7—H7B109.5
C1—N5—C10119.9 (2)C6—C7—H7C109.5
C9—N5—C10117.75 (19)H7A—C7—H7C109.5
O1—C1—N5121.0 (2)H7B—C7—H7C109.5
O1—C1—C2123.7 (2)N3—C8—N2110.9 (2)
N5—C1—C2115.2 (2)N3—C8—H8124.5
C1—C2—C6107.12 (18)N2—C8—H8124.5
C1—C2—C3112.1 (2)N4—C9—N2110.7 (2)
C6—C2—C3116.29 (18)N4—C9—N5125.7 (2)
C1—C2—H2106.9N2—C9—N5123.41 (19)
C6—C2—H2106.9N5—C10—C11112.7 (2)
C3—C2—H2106.9N5—C10—H10A109.0
C4—C3—C2112.3 (2)C11—C10—H10A109.0
C4—C3—H3A109.1N5—C10—H10B109.0
C2—C3—H3A109.1C11—C10—H10B109.0
C4—C3—H3B109.1H10A—C10—H10B107.8
C2—C3—H3B109.1C12—C11—C10124.4 (3)
H3A—C3—H3B107.9C12—C11—H11117.8
C5—C4—C3127.1 (4)C10—C11—H11117.8
C5—C4—H4116.4C11—C12—H12A120.0
C3—C4—H4116.4C11—C12—H12B120.0
C4—C5—H5A120.0H12A—C12—H12B120.0
C4—C5—H5B120.0
C6—N1—N2—C8147.4 (2)C1—C2—C6—C7101.0 (2)
C6—N1—N2—C946.1 (3)C3—C2—C6—C725.3 (3)
C8—N3—N4—C90.7 (3)N4—N3—C8—N20.8 (3)
C9—N5—C1—O1178.4 (2)C9—N2—C8—N30.6 (3)
C10—N5—C1—O16.7 (3)N1—N2—C8—N3170.0 (2)
C9—N5—C1—C23.0 (3)N3—N4—C9—N20.3 (3)
C10—N5—C1—C2174.68 (19)N3—N4—C9—N5176.1 (2)
O1—C1—C2—C6110.7 (2)C8—N2—C9—N40.2 (3)
N5—C1—C2—C667.9 (2)N1—N2—C9—N4168.8 (2)
O1—C1—C2—C318.0 (3)C8—N2—C9—N5175.7 (2)
N5—C1—C2—C3163.40 (19)N1—N2—C9—N57.1 (4)
C1—C2—C3—C4169.1 (2)C1—N5—C9—N4142.8 (2)
C6—C2—C3—C467.2 (3)C10—N5—C9—N429.0 (3)
C2—C3—C4—C5130.9 (3)C1—N5—C9—N241.9 (3)
N2—N1—C6—C7172.6 (2)C10—N5—C9—N2146.2 (2)
N2—N1—C6—C24.6 (3)C1—N5—C10—C1178.4 (3)
C1—C2—C6—N176.1 (3)C9—N5—C10—C1193.6 (3)
C3—C2—C6—N1157.6 (2)N5—C10—C11—C12114.4 (3)

Experimental details

Crystal data
Chemical formulaC12H15N5O
Mr245.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4674 (3), 8.3398 (3), 20.2214 (6)
β (°) 95.174 (2)
V3)1254.19 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.3 × 0.3
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11394, 2435, 1600
Rint0.041
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.176, 1.03
No. of reflections2435
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.31

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEssassi, E. M., Lavergne, J. P. & Vialleffont, P. (1977). Tetrahedron, 33, 2807–2812.  CrossRef CAS Web of Science Google Scholar
First citationRichter, P. & Sheefelot, U. (1991). Pharmazie, 46, 701–705.  PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds