organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Memanti­nium chloride 0.1-hydrate

aDepartment of Pharmacy, Sir Run Run Shaw Hospital of School of Medicine, Sir Run Run Shaw Institute of Clinical Medicine, Zhejiang University, Hangzhou 310016, People's Republic of China, and bCenter of Analysis and Measurement, Zhejiang University, Hangzhou 310028, People's Republic of China
*Correspondence e-mail: huxiurong@yahoo.com.cn

(Received 7 August 2009; accepted 12 August 2009; online 19 August 2009)

The crystal structure of the title compound, C12H22N+·Cl·0.1H2O, consists of (3,5-dimethyl-1-adamantyl)ammonium chloride (memanti­nium chloride) and uncoordinated water mol­ecules. The four six-membered rings of the memanti­nium cation assume typical chair conformations. The Cl counter-anion links with the memanti­nium cation via N—H⋯Cl hydrogen bonding, forming channels where the disordered crystal water molecules are located. The O atom of the water mol­ecule is located on a threefold rotation axis, its two H atoms symmetrically distributed over six sites; the water mol­ecule links with the Cl anions via O—H⋯Cl hydrogen bonding.

Related literature

For applications of memantine in medicine, see: Parsons et al. (1999[Parsons, C. G., Danysz, W. & Quack, G. (1999). Neuropharmacology, 38, 735-767.]); Tariot et al. (2004[Tariot, P. N., Farlow, M. R., Grossbeq, G. T., Graham, S. M., McDonald, S. & Gergel, I. (2004). J. Am. Med. Assoc. 291, 317-324.]). For a related structure, see: Zahid et al. (2009[Zahid, M., Khawar Rauf, M., Bolte, M. & Hameed, S. (2009). Acta Cryst. E65, o1891.]). The H atoms of the ncoordinated water mol­ecule were placed at calculated positions, see: Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]).

[Scheme 1]

Experimental

Crystal data
  • C12H22N+·Cl·0.1H2O

  • Mr = 217.56

  • Trigonal, R 3c

  • a = 28.3787 (11) Å

  • c = 8.5236 (4) Å

  • V = 5944.8 (4) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 K

  • 0.41 × 0.18 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.888, Tmax = 0.959

  • 18491 measured reflections

  • 2845 independent reflections

  • 1671 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.104

  • S = 1.09

  • 2845 reflections

  • 132 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1329 Friedel pairs

  • Flack parameter: 0.06 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.89 2.26 3.147 (3) 176
N1—H1B⋯Cl1ii 0.89 2.28 3.161 (2) 171
N1—H1C⋯Cl1 0.89 2.26 3.148 (3) 175
O1—H1E⋯Cl1ii 0.86 2.62 3.486 (17) 179
O1—H1F⋯Cl1 0.91 2.93 3.81 (2) 163
Symmetry codes: (i) -y+1, x-y+1, z; (ii) [-x+y, y, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is one of a small group of tricycle antiviral drugs (TVA). Memantine also provides good and persistent activation of central nervous N-methyl-D-aspartate (NMDA) receptors, and, thus can be used in the treatment of Parkinson's disease and Alzheimer's disease (Parsons et al., 1999; Tariot et al., 2004).

In the asymmetric unit of the crystal structure of the title compound, there are one mamentinium cation, one Cl- anion and 0.10 lattice water molecule. The expected proton transfer from hydrochloric acid to N1 atom of amino group occurs. The four six-membered rings of the memantinium cation assume typical chair conformations, which is comparable with that found in related structures (Zahid et al., 2009). The Cl- counter-anion links with the memantinium cation via N—H···Cl hydrogen bonding (Fig. 1). The lattice water molecules are located on the channels formed by memantininum cations and Cl- anions (Fig. 2). The O atom of lattice water molecule is located at the threefold rotation axis, and its two H atoms are symmetrically distributed over six sites and linked to Cl- anions via O—H···Cl hydrogen bonding (Table 1).

Related literature top

For applications of memantine in medicine, see: Parsons et al. (1999); Tariot et al. (2004). For a related structure, see: Zahid et al. (2009). The H atoms of the ncoordinated water molecule were placed at calculated positions, see: Nardelli (1999).

Experimental top

The crude product is supplied by Zhejiang Apeloa Pharmaceutical Co.,LTD. It was recrystallized from ethanol solution, giving colorless crystals of (1) suitable for X-ray diffraction.

Refinement top

Site occupancy factor of the water O1 atom was refined to 0.093 and fixed as 0.1 at the final cycles of refinement. The two H atoms of the water molecule were placed at calculated positions (Nardelli, 1999), and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.96–0.98 Å and N—H = 0.89 Å, and included in the refinement in riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing atom-labelling scheme and displacement ellipsoids at 30% probability level. H atoms are shown as small circles of arbitary radii. Dashed lines indicate the hydrogen bonding.
[Figure 2] Fig. 2. The unit cell packing diagram of the title compound.
(3,5-dimethyl-1-adamantyl)ammonium chloride 0.1-hydrate top
Crystal data top
C12H22N·Cl·0.1(H2O)Dx = 1.094 Mg m3
Mr = 217.56Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 10816 reflections
Hall symbol: R 3 -2"cθ = 3.2–27.4°
a = 28.3787 (11) ŵ = 0.26 mm1
c = 8.5236 (4) ÅT = 294 K
V = 5944.8 (4) Å3Block, colorless
Z = 180.41 × 0.18 × 0.16 mm
F(000) = 2142
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2845 independent reflections
Radiation source: rolling anode1671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.2°
ω scansh = 3636
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 3636
Tmin = 0.888, Tmax = 0.959l = 119
18491 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0331P)2 + 3.5112P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.28 e Å3
2845 reflectionsΔρmin = 0.31 e Å3
132 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00185 (17)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1329 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (9)
Crystal data top
C12H22N·Cl·0.1(H2O)Z = 18
Mr = 217.56Mo Kα radiation
Trigonal, R3cµ = 0.26 mm1
a = 28.3787 (11) ÅT = 294 K
c = 8.5236 (4) Å0.41 × 0.18 × 0.16 mm
V = 5944.8 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2845 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1671 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.959Rint = 0.043
18491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.28 e Å3
S = 1.09Δρmin = 0.31 e Å3
2845 reflectionsAbsolute structure: Flack (1983), 1329 Friedel pairs
132 parametersAbsolute structure parameter: 0.06 (9)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.33309 (10)0.56273 (9)0.6470 (3)0.0597 (6)
H1A0.36320.59110.60980.090*
H1B0.33200.56560.75080.090*
H1C0.30410.56200.60460.090*
C10.33298 (13)0.51132 (11)0.6066 (3)0.0552 (7)
C70.28247 (16)0.41097 (14)0.6378 (5)0.0840 (10)
H70.24980.37980.68130.101*
C50.38468 (14)0.46190 (13)0.6423 (4)0.0727 (9)
C40.38361 (11)0.51418 (10)0.6791 (3)0.0621 (7)
H4A0.38330.51870.79180.074*
H4B0.41600.54530.63700.074*
C120.43554 (15)0.46469 (17)0.7130 (5)0.1084 (13)
H12A0.46740.49500.66890.130*
H12B0.43570.43170.68980.130*
H12C0.43550.46910.82460.130*
C20.28213 (12)0.46352 (12)0.6771 (4)0.0720 (8)
H2A0.24980.46210.63390.086*
H2B0.28190.46780.78990.086*
C100.38348 (15)0.45520 (14)0.4635 (4)0.0764 (9)
H10A0.41590.48560.41900.092*
H10B0.38410.42220.43880.092*
C30.33333 (14)0.50494 (13)0.4295 (3)0.0647 (9)
H3A0.36530.53600.38530.078*
H3B0.30140.50370.38440.078*
C60.33304 (14)0.41367 (13)0.7103 (5)0.0874 (10)
H6A0.33310.38010.68880.105*
H6B0.33240.41770.82320.105*
C90.33374 (13)0.45250 (12)0.3886 (4)0.0732 (8)
C110.33487 (18)0.44638 (16)0.2099 (4)0.1064 (14)
H11A0.36700.47690.16780.128*
H11B0.30320.44500.16440.128*
H11C0.33510.41340.18580.128*
C80.28330 (16)0.40466 (14)0.4610 (5)0.0876 (11)
H8A0.25090.40250.41570.105*
H8B0.28290.37110.43690.105*
Cl10.22918 (3)0.56280 (3)0.51793 (11)0.0756 (2)
O10.33330.66670.800 (4)0.181 (9)0.30
H1E0.33300.64100.85570.272*0.10
H1F0.30700.64800.72750.272*0.10
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0637 (13)0.0571 (13)0.0653 (14)0.0355 (12)0.0009 (11)0.0000 (11)
C10.0562 (17)0.0471 (16)0.065 (2)0.0274 (14)0.0031 (14)0.0011 (13)
C70.077 (2)0.0513 (19)0.112 (3)0.0234 (17)0.011 (2)0.0112 (17)
C50.074 (2)0.0604 (19)0.094 (3)0.0408 (18)0.0034 (17)0.0013 (17)
C40.0613 (16)0.0568 (16)0.0704 (18)0.0312 (13)0.0010 (14)0.0009 (14)
C120.110 (3)0.110 (3)0.137 (4)0.079 (3)0.029 (3)0.011 (2)
C20.0639 (18)0.0590 (17)0.088 (2)0.0269 (15)0.0116 (15)0.0076 (15)
C100.083 (2)0.066 (2)0.091 (2)0.0453 (18)0.0076 (18)0.0068 (18)
C30.074 (2)0.0591 (18)0.066 (2)0.0364 (17)0.0033 (17)0.0064 (14)
C60.102 (3)0.064 (2)0.101 (3)0.0448 (19)0.009 (2)0.0171 (18)
C90.088 (2)0.0599 (17)0.077 (2)0.0406 (17)0.0032 (17)0.0150 (15)
C110.150 (4)0.094 (3)0.085 (3)0.069 (3)0.009 (2)0.028 (2)
C80.086 (3)0.0538 (19)0.115 (3)0.0293 (19)0.011 (2)0.016 (2)
Cl10.0867 (6)0.0914 (6)0.0679 (4)0.0589 (4)0.0076 (5)0.0064 (5)
O10.145 (9)0.145 (9)0.25 (3)0.073 (4)0.0000.000
Geometric parameters (Å, º) top
N1—C11.497 (3)C2—H2A0.9700
N1—H1A0.8900C2—H2B0.9700
N1—H1B0.8900C10—C91.516 (5)
N1—H1C0.8900C10—H10A0.9700
C1—C31.521 (3)C10—H10B0.9700
C1—C21.525 (4)C3—C91.534 (4)
C1—C41.529 (4)C3—H3A0.9700
C7—C81.519 (5)C3—H3B0.9700
C7—C61.529 (5)C6—H6A0.9700
C7—C21.533 (5)C6—H6B0.9700
C7—H70.9800C9—C81.526 (5)
C5—C121.529 (4)C9—C111.535 (5)
C5—C41.532 (4)C11—H11A0.9600
C5—C101.534 (4)C11—H11B0.9600
C5—C61.533 (5)C11—H11C0.9600
C4—H4A0.9700C8—H8A0.9700
C4—H4B0.9700C8—H8B0.9700
C12—H12A0.9600O1—H1E0.8634
C12—H12B0.9600O1—H1F0.9108
C12—H12C0.9600
C1—N1—H1A109.5C7—C2—H2B110.0
C1—N1—H1B109.5H2A—C2—H2B108.4
H1A—N1—H1B109.5C9—C10—C5112.8 (3)
C1—N1—H1C109.5C9—C10—H10A109.0
H1A—N1—H1C109.5C5—C10—H10A109.0
H1B—N1—H1C109.5C9—C10—H10B109.0
N1—C1—C3110.3 (3)C5—C10—H10B109.0
N1—C1—C2108.4 (2)H10A—C10—H10B107.8
C3—C1—C2110.2 (2)C1—C3—C9110.2 (3)
N1—C1—C4108.1 (2)C1—C3—H3A109.6
C3—C1—C4110.2 (2)C9—C3—H3A109.6
C2—C1—C4109.5 (2)C1—C3—H3B109.6
C8—C7—C6109.7 (3)C9—C3—H3B109.6
C8—C7—C2109.8 (3)H3A—C3—H3B108.1
C6—C7—C2109.0 (3)C7—C6—C5110.2 (3)
C8—C7—H7109.4C7—C6—H6A109.6
C6—C7—H7109.4C5—C6—H6A109.6
C2—C7—H7109.4C7—C6—H6B109.6
C12—C5—C4110.2 (3)C5—C6—H6B109.6
C12—C5—C10111.1 (3)H6A—C6—H6B108.1
C4—C5—C10108.2 (2)C10—C9—C8108.1 (3)
C12—C5—C6110.7 (3)C10—C9—C3108.3 (3)
C4—C5—C6108.3 (3)C8—C9—C3108.2 (3)
C10—C5—C6108.2 (3)C10—C9—C11110.6 (3)
C1—C4—C5109.8 (2)C8—C9—C11111.3 (3)
C1—C4—H4A109.7C3—C9—C11110.2 (3)
C5—C4—H4A109.7C9—C11—H11A109.5
C1—C4—H4B109.7C9—C11—H11B109.5
C5—C4—H4B109.7H11A—C11—H11B109.5
H4A—C4—H4B108.2C9—C11—H11C109.5
C5—C12—H12A109.5H11A—C11—H11C109.5
C5—C12—H12B109.5H11B—C11—H11C109.5
H12A—C12—H12B109.5C7—C8—C9111.0 (3)
C5—C12—H12C109.5C7—C8—H8A109.4
H12A—C12—H12C109.5C9—C8—H8A109.4
H12B—C12—H12C109.5C7—C8—H8B109.4
C1—C2—C7108.4 (3)C9—C8—H8B109.4
C1—C2—H2A110.0H8A—C8—H8B108.0
C7—C2—H2A110.0H1E—O1—H1F102.8
C1—C2—H2B110.0
N1—C1—C4—C5179.2 (2)C8—C7—C6—C559.3 (4)
C3—C1—C4—C560.1 (3)C2—C7—C6—C561.0 (4)
C2—C1—C4—C561.2 (3)C12—C5—C6—C7179.5 (3)
C12—C5—C4—C1179.4 (3)C4—C5—C6—C759.6 (4)
C10—C5—C4—C157.8 (3)C10—C5—C6—C757.5 (4)
C6—C5—C4—C159.4 (3)C5—C10—C9—C858.5 (3)
N1—C1—C2—C7179.1 (3)C5—C10—C9—C358.5 (3)
C3—C1—C2—C760.0 (3)C5—C10—C9—C11179.4 (3)
C4—C1—C2—C761.4 (3)C1—C3—C9—C1058.1 (3)
C8—C7—C2—C159.2 (4)C1—C3—C9—C858.8 (3)
C6—C7—C2—C161.0 (4)C1—C3—C9—C11179.2 (3)
C12—C5—C10—C9179.7 (3)C6—C7—C8—C959.8 (4)
C4—C5—C10—C958.7 (3)C2—C7—C8—C960.0 (4)
C6—C5—C10—C958.5 (3)C10—C9—C8—C758.3 (4)
N1—C1—C3—C9179.5 (3)C3—C9—C8—C758.8 (4)
C2—C1—C3—C960.8 (3)C11—C9—C8—C7180.0 (3)
C4—C1—C3—C960.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.892.263.147 (3)176
N1—H1B···Cl1ii0.892.283.161 (2)171
N1—H1C···Cl10.892.263.148 (3)175
O1—H1E···Cl1ii0.862.623.486 (17)179
O1—H1F···Cl10.912.933.81 (2)163
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H22N·Cl·0.1(H2O)
Mr217.56
Crystal system, space groupTrigonal, R3c
Temperature (K)294
a, c (Å)28.3787 (11), 8.5236 (4)
V3)5944.8 (4)
Z18
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.41 × 0.18 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.888, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
18491, 2845, 1671
Rint0.043
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.104, 1.09
No. of reflections2845
No. of parameters132
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.31
Absolute structureFlack (1983), 1329 Friedel pairs
Absolute structure parameter0.06 (9)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.892.263.147 (3)176
N1—H1B···Cl1ii0.892.283.161 (2)171
N1—H1C···Cl10.892.263.148 (3)175
O1—H1E···Cl1ii0.862.623.486 (17)179
O1—H1F···Cl10.912.933.81 (2)163
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, y, z+1/2.
 

Acknowledgements

The project was supported by the Zhejiang Provincial Natural Science Foundation of China.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, C. G., Danysz, W. & Quack, G. (1999). Neuropharmacology, 38, 735–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTariot, P. N., Farlow, M. R., Grossbeq, G. T., Graham, S. M., McDonald, S. & Gergel, I. (2004). J. Am. Med. Assoc. 291, 317–324.  Web of Science CrossRef CAS Google Scholar
First citationZahid, M., Khawar Rauf, M., Bolte, M. & Hameed, S. (2009). Acta Cryst. E65, o1891.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds