organic compounds
3-Chloro-5-methoxy-2,6-dinitropyridine
aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: wangjianlong@nuc.edu.cn
In the 6H4ClN3O5, the two nitro groups are twisted with respect to the pyridine ring, making dihedral angles of 33.12 (13) and 63.66 (14)°.
of the title compound, CExperimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809031407/xu2586sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809031407/xu2586Isup2.hkl
The title compound was prepared according to a literature method (Chen et al., 2008). Crystals suitable for X-ray analysis were obtained by slow evaporation of 1,2-dichloroethane.
H atoms were positioned geometrically and refined using a ride model with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H atoms, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for aromatic H atom.
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of title compound, with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). |
C6H4ClN3O5 | F(000) = 472 |
Mr = 233.57 | Dx = 1.701 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5866 reflections |
a = 6.6490 (13) Å | θ = 2.5–27.5° |
b = 10.842 (2) Å | µ = 0.43 mm−1 |
c = 12.715 (3) Å | T = 293 K |
β = 95.55 (3)° | Block, colorless |
V = 912.3 (3) Å3 | 0.50 × 0.40 × 0.28 mm |
Z = 4 |
Rigaku R-AXIS RAPID IP diffractometer | 2062 independent reflections |
Radiation source: fine-focus sealed tube | 1275 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 2.5° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −13→13 |
Tmin = 0.808, Tmax = 0.887 | l = −16→16 |
5866 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.08P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
2062 reflections | Δρmax = 0.26 e Å−3 |
138 parameters | Δρmin = −0.30 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Version 4.2; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.157 (11) |
C6H4ClN3O5 | V = 912.3 (3) Å3 |
Mr = 233.57 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.6490 (13) Å | µ = 0.43 mm−1 |
b = 10.842 (2) Å | T = 293 K |
c = 12.715 (3) Å | 0.50 × 0.40 × 0.28 mm |
β = 95.55 (3)° |
Rigaku R-AXIS RAPID IP diffractometer | 2062 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1275 reflections with I > 2σ(I) |
Tmin = 0.808, Tmax = 0.887 | Rint = 0.050 |
5866 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.26 e Å−3 |
2062 reflections | Δρmin = −0.30 e Å−3 |
138 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.17055 (10) | 0.52802 (8) | 0.42365 (6) | 0.0756 (3) | |
O1 | 0.8010 (3) | 0.77739 (16) | 0.37270 (12) | 0.0536 (5) | |
O2 | 0.2241 (4) | 0.3362 (2) | 0.27062 (18) | 0.0939 (8) | |
O3 | 0.2590 (3) | 0.4071 (2) | 0.11455 (16) | 0.0716 (6) | |
O4 | 0.8115 (4) | 0.7839 (2) | 0.14363 (19) | 0.0949 (8) | |
O5 | 0.9482 (4) | 0.6061 (2) | 0.1524 (2) | 0.1051 (9) | |
N1 | 0.5510 (3) | 0.55114 (17) | 0.20338 (15) | 0.0439 (5) | |
N2 | 0.2845 (3) | 0.4126 (2) | 0.2107 (2) | 0.0590 (6) | |
N3 | 0.8230 (3) | 0.6789 (2) | 0.17477 (16) | 0.0556 (6) | |
C1 | 0.4068 (3) | 0.5141 (2) | 0.25985 (18) | 0.0440 (5) | |
C2 | 0.3749 (3) | 0.5646 (2) | 0.35677 (18) | 0.0453 (6) | |
C3 | 0.5061 (3) | 0.6544 (2) | 0.39881 (17) | 0.0443 (5) | |
H3 | 0.4898 | 0.6885 | 0.4645 | 0.053* | |
C4 | 0.6614 (3) | 0.6929 (2) | 0.34246 (16) | 0.0407 (5) | |
C5 | 0.6705 (3) | 0.6373 (2) | 0.24397 (16) | 0.0412 (5) | |
C6 | 0.7921 (5) | 0.8349 (3) | 0.47424 (19) | 0.0657 (8) | |
H6A | 0.6641 | 0.8754 | 0.4761 | 0.099* | |
H6B | 0.8989 | 0.8944 | 0.4857 | 0.099* | |
H6C | 0.8073 | 0.7732 | 0.5286 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0570 (4) | 0.0974 (6) | 0.0777 (5) | −0.0107 (4) | 0.0343 (4) | 0.0139 (4) |
O1 | 0.0575 (10) | 0.0580 (10) | 0.0474 (9) | −0.0144 (8) | 0.0153 (8) | −0.0112 (8) |
O2 | 0.1109 (18) | 0.0831 (15) | 0.0882 (15) | −0.0542 (15) | 0.0115 (13) | 0.0088 (12) |
O3 | 0.0704 (12) | 0.0772 (13) | 0.0661 (13) | −0.0183 (10) | 0.0006 (10) | −0.0065 (10) |
O4 | 0.1047 (18) | 0.0908 (18) | 0.0946 (16) | −0.0134 (14) | 0.0377 (14) | 0.0320 (13) |
O5 | 0.0869 (16) | 0.1075 (19) | 0.133 (2) | 0.0047 (15) | 0.0717 (15) | −0.0076 (16) |
N1 | 0.0418 (10) | 0.0451 (10) | 0.0457 (10) | −0.0002 (9) | 0.0083 (8) | −0.0001 (8) |
N2 | 0.0494 (12) | 0.0609 (14) | 0.0666 (15) | −0.0129 (11) | 0.0060 (10) | 0.0026 (11) |
N3 | 0.0526 (12) | 0.0688 (15) | 0.0481 (11) | −0.0127 (11) | 0.0182 (9) | −0.0061 (11) |
C1 | 0.0400 (11) | 0.0430 (12) | 0.0492 (12) | −0.0024 (10) | 0.0053 (10) | 0.0060 (10) |
C2 | 0.0388 (11) | 0.0492 (13) | 0.0493 (13) | 0.0041 (10) | 0.0121 (9) | 0.0141 (10) |
C3 | 0.0468 (12) | 0.0476 (13) | 0.0405 (12) | 0.0064 (11) | 0.0150 (9) | 0.0035 (10) |
C4 | 0.0415 (11) | 0.0395 (11) | 0.0422 (12) | 0.0038 (10) | 0.0096 (9) | 0.0035 (9) |
C5 | 0.0364 (10) | 0.0460 (12) | 0.0423 (11) | 0.0004 (10) | 0.0097 (9) | 0.0037 (9) |
C6 | 0.0845 (19) | 0.0678 (17) | 0.0463 (14) | −0.0182 (15) | 0.0138 (13) | −0.0125 (12) |
Cl1—C2 | 1.717 (2) | N3—C5 | 1.476 (3) |
O1—C4 | 1.334 (3) | C1—C2 | 1.384 (3) |
O1—C6 | 1.440 (3) | C2—C3 | 1.380 (3) |
O2—N2 | 1.219 (3) | C3—C4 | 1.378 (3) |
O3—N2 | 1.219 (3) | C3—H3 | 0.9300 |
O4—N3 | 1.206 (3) | C4—C5 | 1.396 (3) |
O5—N3 | 1.201 (3) | C6—H6A | 0.9600 |
N1—C5 | 1.300 (3) | C6—H6B | 0.9600 |
N1—C1 | 1.315 (3) | C6—H6C | 0.9600 |
N2—C1 | 1.472 (3) | ||
C4—O1—C6 | 117.90 (18) | C4—C3—H3 | 120.3 |
C5—N1—C1 | 116.89 (19) | C2—C3—H3 | 120.3 |
O3—N2—O2 | 124.9 (2) | O1—C4—C3 | 126.4 (2) |
O3—N2—C1 | 118.7 (2) | O1—C4—C5 | 117.78 (18) |
O2—N2—C1 | 116.4 (2) | C3—C4—C5 | 115.8 (2) |
O5—N3—O4 | 124.5 (2) | N1—C5—C4 | 126.05 (19) |
O5—N3—C5 | 118.2 (2) | N1—C5—N3 | 114.31 (18) |
O4—N3—C5 | 117.3 (2) | C4—C5—N3 | 119.6 (2) |
N1—C1—C2 | 123.3 (2) | O1—C6—H6A | 109.5 |
N1—C1—N2 | 113.5 (2) | O1—C6—H6B | 109.5 |
C2—C1—N2 | 123.2 (2) | H6A—C6—H6B | 109.5 |
C3—C2—C1 | 118.6 (2) | O1—C6—H6C | 109.5 |
C3—C2—Cl1 | 118.16 (18) | H6A—C6—H6C | 109.5 |
C1—C2—Cl1 | 123.13 (19) | H6B—C6—H6C | 109.5 |
C4—C3—C2 | 119.3 (2) | ||
C5—N1—C1—C2 | 1.9 (3) | C6—O1—C4—C5 | −180.0 (2) |
C5—N1—C1—N2 | −177.3 (2) | C2—C3—C4—O1 | −179.3 (2) |
O3—N2—C1—N1 | −31.5 (3) | C2—C3—C4—C5 | 1.0 (3) |
O2—N2—C1—N1 | 145.0 (2) | C1—N1—C5—C4 | 0.9 (3) |
O3—N2—C1—C2 | 149.3 (2) | C1—N1—C5—N3 | −177.3 (2) |
O2—N2—C1—C2 | −34.2 (4) | O1—C4—C5—N1 | 178.0 (2) |
N1—C1—C2—C3 | −3.1 (3) | C3—C4—C5—N1 | −2.3 (3) |
N2—C1—C2—C3 | 176.0 (2) | O1—C4—C5—N3 | −4.0 (3) |
N1—C1—C2—Cl1 | 172.71 (17) | C3—C4—C5—N3 | 175.7 (2) |
N2—C1—C2—Cl1 | −8.2 (3) | O5—N3—C5—N1 | −64.2 (3) |
C1—C2—C3—C4 | 1.4 (3) | O4—N3—C5—N1 | 115.0 (3) |
Cl1—C2—C3—C4 | −174.58 (16) | O5—N3—C5—C4 | 117.5 (3) |
C6—O1—C4—C3 | 0.3 (3) | O4—N3—C5—C4 | −63.3 (3) |
Experimental details
Crystal data | |
Chemical formula | C6H4ClN3O5 |
Mr | 233.57 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 6.6490 (13), 10.842 (2), 12.715 (3) |
β (°) | 95.55 (3) |
V (Å3) | 912.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.43 |
Crystal size (mm) | 0.50 × 0.40 × 0.28 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.808, 0.887 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5866, 2062, 1275 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.135, 0.99 |
No. of reflections | 2062 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.30 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by China North Industries Group Corporation (project No. ZC060302-15).
References
Bissell, E. R. & Swansiger, R. W. (1987). J. Heterocycl. Chem. 24, 59–62. CrossRef CAS Google Scholar
Chen, J., Li, Q.-L. & Wang, J.-L. (2008). Chin. J. Org. Chem. 28, 123–126. CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine derivatives are important intermediates used to synthesize pesticide, medicine and play important roles in fine chemical field. 3-Chloro-5-methoxyl- 2,6-dinitro-pyridine was synthesized from 3,5-dichloropyridine N-oxide by substitution and nitration (Bissell et al., 1987), and the process was improved by Chen et al. (2008). The crystal structure of the title compound is presented here.
The molecular structure of the title compound is shown in Fig. 1. While the methoxyl group, except H atoms, is co-planar with the pyridine ring, the two nitro groups are twisted with respect to the pyridine ring with dihedral angles of 33.12 (13) and 63.66 (14)°, respectively. Neither hydrogen bonding nor π-π stacking is observed in the crystal structure.