organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-5-meth­­oxy-2,6-di­nitro­pyridine

aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: wangjianlong@nuc.edu.cn

(Received 8 August 2009; accepted 10 August 2009; online 15 August 2009)

In the crystal structure of the title compound, C6H4ClN3O5, the two nitro groups are twisted with respect to the pyridine ring, making dihedral angles of 33.12 (13) and 63.66 (14)°.

Related literature

For the synthesis, see: Bissell & Swansiger (1987[Bissell, E. R. & Swansiger, R. W. (1987). J. Heterocycl. Chem. 24, 59-62.]); Chen et al. (2008[Chen, J., Li, Q.-L. & Wang, J.-L. (2008). Chin. J. Org. Chem. 28, 123-126.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4ClN3O5

  • Mr = 233.57

  • Monoclinic, P 21 /n

  • a = 6.6490 (13) Å

  • b = 10.842 (2) Å

  • c = 12.715 (3) Å

  • β = 95.55 (3)°

  • V = 912.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.808, Tmax = 0.887

  • 5866 measured reflections

  • 2062 independent reflections

  • 1275 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 0.99

  • 2062 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine derivatives are important intermediates used to synthesize pesticide, medicine and play important roles in fine chemical field. 3-Chloro-5-methoxyl- 2,6-dinitro-pyridine was synthesized from 3,5-dichloropyridine N-oxide by substitution and nitration (Bissell et al., 1987), and the process was improved by Chen et al. (2008). The crystal structure of the title compound is presented here.

The molecular structure of the title compound is shown in Fig. 1. While the methoxyl group, except H atoms, is co-planar with the pyridine ring, the two nitro groups are twisted with respect to the pyridine ring with dihedral angles of 33.12 (13) and 63.66 (14)°, respectively. Neither hydrogen bonding nor π-π stacking is observed in the crystal structure.

Related literature top

For the synthesis, see: Bissell & Swansiger (1987); Chen et al. (2008).

Experimental top

The title compound was prepared according to a literature method (Chen et al., 2008). Crystals suitable for X-ray analysis were obtained by slow evaporation of 1,2-dichloroethane.

Refinement top

H atoms were positioned geometrically and refined using a ride model with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H atoms, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for aromatic H atom.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
3-Chloro-5-methoxy-2,6-dinitropyridine top
Crystal data top
C6H4ClN3O5F(000) = 472
Mr = 233.57Dx = 1.701 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5866 reflections
a = 6.6490 (13) Åθ = 2.5–27.5°
b = 10.842 (2) ŵ = 0.43 mm1
c = 12.715 (3) ÅT = 293 K
β = 95.55 (3)°Block, colorless
V = 912.3 (3) Å30.50 × 0.40 × 0.28 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2062 independent reflections
Radiation source: fine-focus sealed tube1275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.808, Tmax = 0.887l = 1616
5866 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.08P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2062 reflectionsΔρmax = 0.26 e Å3
138 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXTL (Version 4.2; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.157 (11)
Crystal data top
C6H4ClN3O5V = 912.3 (3) Å3
Mr = 233.57Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6490 (13) ŵ = 0.43 mm1
b = 10.842 (2) ÅT = 293 K
c = 12.715 (3) Å0.50 × 0.40 × 0.28 mm
β = 95.55 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2062 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1275 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.887Rint = 0.050
5866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 0.99Δρmax = 0.26 e Å3
2062 reflectionsΔρmin = 0.30 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17055 (10)0.52802 (8)0.42365 (6)0.0756 (3)
O10.8010 (3)0.77739 (16)0.37270 (12)0.0536 (5)
O20.2241 (4)0.3362 (2)0.27062 (18)0.0939 (8)
O30.2590 (3)0.4071 (2)0.11455 (16)0.0716 (6)
O40.8115 (4)0.7839 (2)0.14363 (19)0.0949 (8)
O50.9482 (4)0.6061 (2)0.1524 (2)0.1051 (9)
N10.5510 (3)0.55114 (17)0.20338 (15)0.0439 (5)
N20.2845 (3)0.4126 (2)0.2107 (2)0.0590 (6)
N30.8230 (3)0.6789 (2)0.17477 (16)0.0556 (6)
C10.4068 (3)0.5141 (2)0.25985 (18)0.0440 (5)
C20.3749 (3)0.5646 (2)0.35677 (18)0.0453 (6)
C30.5061 (3)0.6544 (2)0.39881 (17)0.0443 (5)
H30.48980.68850.46450.053*
C40.6614 (3)0.6929 (2)0.34246 (16)0.0407 (5)
C50.6705 (3)0.6373 (2)0.24397 (16)0.0412 (5)
C60.7921 (5)0.8349 (3)0.47424 (19)0.0657 (8)
H6A0.66410.87540.47610.099*
H6B0.89890.89440.48570.099*
H6C0.80730.77320.52860.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0570 (4)0.0974 (6)0.0777 (5)0.0107 (4)0.0343 (4)0.0139 (4)
O10.0575 (10)0.0580 (10)0.0474 (9)0.0144 (8)0.0153 (8)0.0112 (8)
O20.1109 (18)0.0831 (15)0.0882 (15)0.0542 (15)0.0115 (13)0.0088 (12)
O30.0704 (12)0.0772 (13)0.0661 (13)0.0183 (10)0.0006 (10)0.0065 (10)
O40.1047 (18)0.0908 (18)0.0946 (16)0.0134 (14)0.0377 (14)0.0320 (13)
O50.0869 (16)0.1075 (19)0.133 (2)0.0047 (15)0.0717 (15)0.0076 (16)
N10.0418 (10)0.0451 (10)0.0457 (10)0.0002 (9)0.0083 (8)0.0001 (8)
N20.0494 (12)0.0609 (14)0.0666 (15)0.0129 (11)0.0060 (10)0.0026 (11)
N30.0526 (12)0.0688 (15)0.0481 (11)0.0127 (11)0.0182 (9)0.0061 (11)
C10.0400 (11)0.0430 (12)0.0492 (12)0.0024 (10)0.0053 (10)0.0060 (10)
C20.0388 (11)0.0492 (13)0.0493 (13)0.0041 (10)0.0121 (9)0.0141 (10)
C30.0468 (12)0.0476 (13)0.0405 (12)0.0064 (11)0.0150 (9)0.0035 (10)
C40.0415 (11)0.0395 (11)0.0422 (12)0.0038 (10)0.0096 (9)0.0035 (9)
C50.0364 (10)0.0460 (12)0.0423 (11)0.0004 (10)0.0097 (9)0.0037 (9)
C60.0845 (19)0.0678 (17)0.0463 (14)0.0182 (15)0.0138 (13)0.0125 (12)
Geometric parameters (Å, º) top
Cl1—C21.717 (2)N3—C51.476 (3)
O1—C41.334 (3)C1—C21.384 (3)
O1—C61.440 (3)C2—C31.380 (3)
O2—N21.219 (3)C3—C41.378 (3)
O3—N21.219 (3)C3—H30.9300
O4—N31.206 (3)C4—C51.396 (3)
O5—N31.201 (3)C6—H6A0.9600
N1—C51.300 (3)C6—H6B0.9600
N1—C11.315 (3)C6—H6C0.9600
N2—C11.472 (3)
C4—O1—C6117.90 (18)C4—C3—H3120.3
C5—N1—C1116.89 (19)C2—C3—H3120.3
O3—N2—O2124.9 (2)O1—C4—C3126.4 (2)
O3—N2—C1118.7 (2)O1—C4—C5117.78 (18)
O2—N2—C1116.4 (2)C3—C4—C5115.8 (2)
O5—N3—O4124.5 (2)N1—C5—C4126.05 (19)
O5—N3—C5118.2 (2)N1—C5—N3114.31 (18)
O4—N3—C5117.3 (2)C4—C5—N3119.6 (2)
N1—C1—C2123.3 (2)O1—C6—H6A109.5
N1—C1—N2113.5 (2)O1—C6—H6B109.5
C2—C1—N2123.2 (2)H6A—C6—H6B109.5
C3—C2—C1118.6 (2)O1—C6—H6C109.5
C3—C2—Cl1118.16 (18)H6A—C6—H6C109.5
C1—C2—Cl1123.13 (19)H6B—C6—H6C109.5
C4—C3—C2119.3 (2)
C5—N1—C1—C21.9 (3)C6—O1—C4—C5180.0 (2)
C5—N1—C1—N2177.3 (2)C2—C3—C4—O1179.3 (2)
O3—N2—C1—N131.5 (3)C2—C3—C4—C51.0 (3)
O2—N2—C1—N1145.0 (2)C1—N1—C5—C40.9 (3)
O3—N2—C1—C2149.3 (2)C1—N1—C5—N3177.3 (2)
O2—N2—C1—C234.2 (4)O1—C4—C5—N1178.0 (2)
N1—C1—C2—C33.1 (3)C3—C4—C5—N12.3 (3)
N2—C1—C2—C3176.0 (2)O1—C4—C5—N34.0 (3)
N1—C1—C2—Cl1172.71 (17)C3—C4—C5—N3175.7 (2)
N2—C1—C2—Cl18.2 (3)O5—N3—C5—N164.2 (3)
C1—C2—C3—C41.4 (3)O4—N3—C5—N1115.0 (3)
Cl1—C2—C3—C4174.58 (16)O5—N3—C5—C4117.5 (3)
C6—O1—C4—C30.3 (3)O4—N3—C5—C463.3 (3)

Experimental details

Crystal data
Chemical formulaC6H4ClN3O5
Mr233.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.6490 (13), 10.842 (2), 12.715 (3)
β (°) 95.55 (3)
V3)912.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.50 × 0.40 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.808, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
5866, 2062, 1275
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 0.99
No. of reflections2062
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.30

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by China North Industries Group Corporation (project No. ZC060302-15).

References

First citationBissell, E. R. & Swansiger, R. W. (1987). J. Heterocycl. Chem. 24, 59–62.  CrossRef CAS Google Scholar
First citationChen, J., Li, Q.-L. & Wang, J.-L. (2008). Chin. J. Org. Chem. 28, 123–126.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds