organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(4-nitro­benzo­yl)hydrazine

aSchool of Chemistry & Chemical Engineering, Fuyang Normal College, Fuyang 236041, Anhui, People's Republic of China, and bDepartment of Biology, Qingyuan Polytechnic, Qingyuan 511515, People's Republic of China
*Correspondence e-mail: jiangxueyue@126.com

(Received 9 August 2009; accepted 12 August 2009; online 19 August 2009)

The title mol­ecule, C14H10N4O6, crystallizes with one half-mol­ecule in the asymmetric unit; the mid-point of the N—N bond lies on an inversion centre. The nitro and amide groups are twisted with respect to the benzene ring, making dihedral angles of 14.6 (5) and 31.1 (5)°, respectively. In the crystal structure, mol­ecules are linked through N—H⋯O hydrogen bonding between the imino and carbonyl groups.

Related literature

For the biological activity of hydrazides, see: Cui et al. (2007[Cui, Z.-N., Wang, Z., Li, Y., Zhou, X.-Y., Ling, Y. & Yang, X.-L. (2007). Chin. J. Org. Chem. 27, 1300-1304.]); Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.]). For related structures, see: Shang et al. (2005a[Shang, J., Wang, Q.-M., Huang, R.-Q., Chen, L., Song, H.-B. & Mao, C.-H. (2005a). Acta Cryst. E61, o1043-o1045.],b[Shang, J., Wang, Q.-M., Song, H.-B., Huang, R.-Q., Chen, L. & Mao, C.-H. (2005b). Acta Cryst. E61, o936-o938.]); Zhang et al. (2009[Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N4O6

  • Mr = 330.26

  • Monoclinic, P 21 /n

  • a = 4.7947 (6) Å

  • b = 9.8750 (11) Å

  • c = 14.9094 (17) Å

  • β = 99.05 (3)°

  • V = 697.13 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.988

  • 1364 measured reflections

  • 1364 independent reflections

  • 673 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.220

  • S = 1.10

  • 1364 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.12 2.881 (5) 147
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius. (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazides have been demonstrated to possess excellent biological activities (Cui et al., 2007; Li & Ban, 2009). Recently a great deal of hydrazides have been synthesized and characterized (Shang et al., 2005a,b; Zhang et al., 2009; Li & Ban, 2009). We also are interested in this field of research, we report here the crystal structure of the title compound.

The molecular structure of the title compound has crystallographically imposed inversion symmetry located in the middle of the N—N bond (Fig. 1). One intermolecular hydrogen bond N—H···O is observed in the crystal structure (Table 1).

Related literature top

For the biological activity of hydrazides, see: Cui et al. (2007); Li & Ban (2009). For related structures, see: Shang et al. (2005a,b); Zhang et al. (2009).

Experimental top

4-Nitrobenzohydrazide (0.371 g, 2.0 mmol) and 20 ml chloroform were introduced into a round-bottomed flask at 281 K and stirred. 4-Nitrobenzoyl chloride (0.362 g, 2.0 mmol) was added to the mixture, which was stirred for 2 h at room temperature. A colourless solid product was filtered, and washed three times with ethyl ether. Crystals of the title compound suitable for X-ray structural determination was obtained by slow evaporation a methanol solution in air.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title copound, showing 30% probability displacement ellipsoids [symmetry code: (i) 2-x, -y, 1-z].
1,2-Bis(4-nitrobenzoyl)hydrazine top
Crystal data top
C14H10N4O6F(000) = 340
Mr = 330.26Dx = 1.573 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 4.7947 (6) Åθ = 8–12°
b = 9.8750 (11) ŵ = 0.13 mm1
c = 14.9094 (17) ÅT = 293 K
β = 99.05 (3)°Block, colorless
V = 697.13 (14) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
673 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
ω/2θ scansh = 55
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.975, Tmax = 0.988l = 018
1364 measured reflections3 standard reflections every 200 reflections
1364 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.1296P]
where P = (Fo2 + 2Fc2)/3
1364 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C14H10N4O6V = 697.13 (14) Å3
Mr = 330.26Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.7947 (6) ŵ = 0.13 mm1
b = 9.8750 (11) ÅT = 293 K
c = 14.9094 (17) Å0.20 × 0.10 × 0.10 mm
β = 99.05 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
673 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.975, Tmax = 0.9883 standard reflections every 200 reflections
1364 measured reflections intensity decay: none
1364 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.10Δρmax = 0.13 e Å3
1364 reflectionsΔρmin = 0.15 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5717 (7)0.0146 (4)0.4016 (2)0.0940 (11)
O20.8216 (9)0.1386 (5)0.0278 (3)0.1227 (16)
O31.2216 (11)0.2315 (5)0.0270 (3)0.1219 (15)
N11.0280 (8)0.0187 (4)0.4580 (2)0.0842 (12)
H1A1.19510.04190.44980.101*
N21.0017 (12)0.1715 (5)0.0358 (3)0.0949 (13)
C10.8102 (10)0.0176 (5)0.3890 (3)0.0794 (12)
C20.8783 (10)0.0610 (5)0.2994 (3)0.0775 (12)
C30.7163 (12)0.0022 (6)0.2224 (4)0.1007 (16)
H3A0.58230.06330.22970.121*
C40.7531 (11)0.0399 (6)0.1371 (3)0.0920 (15)
H4A0.63790.00470.08650.110*
C50.9622 (12)0.1304 (6)0.1272 (3)0.0897 (14)
C61.1218 (12)0.1918 (5)0.2030 (4)0.0926 (15)
H6A1.25220.25870.19520.111*
C71.0864 (12)0.1540 (5)0.2868 (3)0.0939 (15)
H7A1.20210.19030.33700.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.087 (2)0.124 (3)0.0660 (19)0.004 (2)0.0060 (16)0.0027 (19)
O20.140 (3)0.145 (4)0.070 (2)0.015 (3)0.024 (2)0.009 (3)
O30.156 (4)0.117 (3)0.090 (3)0.013 (3)0.010 (3)0.015 (2)
N10.077 (2)0.102 (3)0.065 (2)0.004 (2)0.0141 (18)0.012 (2)
N20.117 (3)0.085 (3)0.082 (3)0.014 (3)0.009 (3)0.014 (2)
C10.086 (3)0.076 (3)0.070 (3)0.000 (2)0.007 (2)0.003 (2)
C20.081 (3)0.079 (3)0.064 (2)0.006 (2)0.017 (2)0.005 (2)
C30.109 (4)0.098 (4)0.080 (3)0.017 (3)0.029 (3)0.002 (3)
C40.099 (3)0.102 (4)0.066 (3)0.008 (3)0.012 (3)0.001 (3)
C50.113 (4)0.079 (3)0.070 (3)0.017 (3)0.009 (3)0.011 (3)
C60.114 (4)0.075 (3)0.079 (3)0.008 (3)0.017 (3)0.005 (3)
C70.112 (4)0.079 (3)0.075 (3)0.005 (3)0.035 (3)0.003 (3)
Geometric parameters (Å, º) top
O1—C11.229 (5)C2—C31.407 (7)
O2—N21.221 (6)C3—C41.362 (7)
O3—N21.234 (5)C3—H3A0.9300
N1—C11.346 (6)C4—C51.368 (7)
N1—N1i1.372 (7)C4—H4A0.9300
N1—H1A0.8600C5—C61.400 (7)
N2—C51.462 (6)C6—C71.340 (7)
C1—C21.488 (6)C6—H6A0.9300
C2—C71.390 (7)C7—H7A0.9300
C1—N1—N1i117.1 (5)C2—C3—H3A119.6
C1—N1—H1A121.5C3—C4—C5119.0 (5)
N1i—N1—H1A121.5C3—C4—H4A120.5
O2—N2—O3123.8 (5)C5—C4—H4A120.5
O2—N2—C5118.0 (5)C4—C5—C6120.8 (5)
O3—N2—C5118.1 (5)C4—C5—N2119.1 (5)
O1—C1—N1121.0 (4)C6—C5—N2119.8 (5)
O1—C1—C2123.5 (4)C7—C6—C5119.9 (5)
N1—C1—C2115.5 (4)C7—C6—H6A120.0
C7—C2—C3118.6 (5)C5—C6—H6A120.0
C7—C2—C1125.1 (5)C6—C7—C2120.6 (5)
C3—C2—C1116.3 (5)C6—C7—H7A119.7
C4—C3—C2120.9 (5)C2—C7—H7A119.7
C4—C3—H3A119.6
N1i—N1—C1—O10.7 (8)C3—C4—C5—N2179.8 (5)
N1i—N1—C1—C2179.0 (5)O2—N2—C5—C410.3 (7)
O1—C1—C2—C7148.0 (5)O3—N2—C5—C4166.2 (5)
N1—C1—C2—C730.3 (7)O2—N2—C5—C6164.5 (5)
O1—C1—C2—C331.9 (7)O3—N2—C5—C619.0 (7)
N1—C1—C2—C3149.8 (5)C4—C5—C6—C75.5 (8)
C7—C2—C3—C43.0 (8)N2—C5—C6—C7179.8 (5)
C1—C2—C3—C4176.9 (5)C5—C6—C7—C24.6 (8)
C2—C3—C4—C53.8 (9)C3—C2—C7—C63.4 (8)
C3—C4—C5—C65.0 (8)C1—C2—C7—C6176.5 (5)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.862.122.881 (5)147
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H10N4O6
Mr330.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.7947 (6), 9.8750 (11), 14.9094 (17)
β (°) 99.05 (3)
V3)697.13 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
1364, 1364, 673
Rint0.000
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.220, 1.10
No. of reflections1364
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.122.881 (5)147.1
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support by the Innovative and Entrepreneurial Project of Anhui Province for the Introduction of High-Level Talent (No. 2008Z038) and the Education Office of Anhui Province, China (No. KJ2007B227).

References

First citationCui, Z.-N., Wang, Z., Li, Y., Zhou, X.-Y., Ling, Y. & Yang, X.-L. (2007). Chin. J. Org. Chem. 27, 1300–1304.  CAS Google Scholar
First citationEnraf–Nonius. (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationShang, J., Wang, Q.-M., Huang, R.-Q., Chen, L., Song, H.-B. & Mao, C.-H. (2005a). Acta Cryst. E61, o1043–o1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShang, J., Wang, Q.-M., Song, H.-B., Huang, R.-Q., Chen, L. & Mao, C.-H. (2005b). Acta Cryst. E61, o936–o938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds