organic compounds
1,2-Bis(4-nitrobenzoyl)hydrazine
aSchool of Chemistry & Chemical Engineering, Fuyang Normal College, Fuyang 236041, Anhui, People's Republic of China, and bDepartment of Biology, Qingyuan Polytechnic, Qingyuan 511515, People's Republic of China
*Correspondence e-mail: jiangxueyue@126.com
The title molecule, C14H10N4O6, crystallizes with one half-molecule in the the mid-point of the N—N bond lies on an inversion centre. The nitro and amide groups are twisted with respect to the benzene ring, making dihedral angles of 14.6 (5) and 31.1 (5)°, respectively. In the molecules are linked through N—H⋯O hydrogen bonding between the imino and carbonyl groups.
Related literature
For the biological activity of et al. (2007); Li & Ban (2009). For related structures, see: Shang et al. (2005a,b); Zhang et al. (2009).
see: CuiExperimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680903181X/xu2587sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680903181X/xu2587Isup2.hkl
4-Nitrobenzohydrazide (0.371 g, 2.0 mmol) and 20 ml chloroform were introduced into a round-bottomed flask at 281 K and stirred. 4-Nitrobenzoyl chloride (0.362 g, 2.0 mmol) was added to the mixture, which was stirred for 2 h at room temperature. A colourless solid product was filtered, and washed three times with ethyl ether. Crystals of the title compound suitable for X-ray structural determination was obtained by slow evaporation a methanol solution in air.
H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(C,N).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title copound, showing 30% probability displacement ellipsoids [symmetry code: (i) 2-x, -y, 1-z]. |
C14H10N4O6 | F(000) = 340 |
Mr = 330.26 | Dx = 1.573 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 4.7947 (6) Å | θ = 8–12° |
b = 9.8750 (11) Å | µ = 0.13 mm−1 |
c = 14.9094 (17) Å | T = 293 K |
β = 99.05 (3)° | Block, colorless |
V = 697.13 (14) Å3 | 0.20 × 0.10 × 0.10 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | 673 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 26.0°, θmin = 2.5° |
ω/2θ scans | h = −5→5 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→12 |
Tmin = 0.975, Tmax = 0.988 | l = 0→18 |
1364 measured reflections | 3 standard reflections every 200 reflections |
1364 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.220 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0632P)2 + 0.1296P] where P = (Fo2 + 2Fc2)/3 |
1364 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C14H10N4O6 | V = 697.13 (14) Å3 |
Mr = 330.26 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 4.7947 (6) Å | µ = 0.13 mm−1 |
b = 9.8750 (11) Å | T = 293 K |
c = 14.9094 (17) Å | 0.20 × 0.10 × 0.10 mm |
β = 99.05 (3)° |
Enraf–Nonius CAD-4 diffractometer | 673 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.975, Tmax = 0.988 | 3 standard reflections every 200 reflections |
1364 measured reflections | intensity decay: none |
1364 independent reflections |
R[F2 > 2σ(F2)] = 0.070 | 0 restraints |
wR(F2) = 0.220 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.13 e Å−3 |
1364 reflections | Δρmin = −0.15 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5717 (7) | −0.0146 (4) | 0.4016 (2) | 0.0940 (11) | |
O2 | 0.8216 (9) | 0.1386 (5) | −0.0278 (3) | 0.1227 (16) | |
O3 | 1.2216 (11) | 0.2315 (5) | 0.0270 (3) | 0.1219 (15) | |
N1 | 1.0280 (8) | 0.0187 (4) | 0.4580 (2) | 0.0842 (12) | |
H1A | 1.1951 | 0.0419 | 0.4498 | 0.101* | |
N2 | 1.0017 (12) | 0.1715 (5) | 0.0358 (3) | 0.0949 (13) | |
C1 | 0.8102 (10) | 0.0176 (5) | 0.3890 (3) | 0.0794 (12) | |
C2 | 0.8783 (10) | 0.0610 (5) | 0.2994 (3) | 0.0775 (12) | |
C3 | 0.7163 (12) | 0.0022 (6) | 0.2224 (4) | 0.1007 (16) | |
H3A | 0.5823 | −0.0633 | 0.2297 | 0.121* | |
C4 | 0.7531 (11) | 0.0399 (6) | 0.1371 (3) | 0.0920 (15) | |
H4A | 0.6379 | 0.0047 | 0.0865 | 0.110* | |
C5 | 0.9622 (12) | 0.1304 (6) | 0.1272 (3) | 0.0897 (14) | |
C6 | 1.1218 (12) | 0.1918 (5) | 0.2030 (4) | 0.0926 (15) | |
H6A | 1.2522 | 0.2587 | 0.1952 | 0.111* | |
C7 | 1.0864 (12) | 0.1540 (5) | 0.2868 (3) | 0.0939 (15) | |
H7A | 1.2021 | 0.1903 | 0.3370 | 0.113* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.087 (2) | 0.124 (3) | 0.0660 (19) | −0.004 (2) | −0.0060 (16) | 0.0027 (19) |
O2 | 0.140 (3) | 0.145 (4) | 0.070 (2) | 0.015 (3) | −0.024 (2) | 0.009 (3) |
O3 | 0.156 (4) | 0.117 (3) | 0.090 (3) | −0.013 (3) | 0.010 (3) | 0.015 (2) |
N1 | 0.077 (2) | 0.102 (3) | 0.065 (2) | −0.004 (2) | −0.0141 (18) | 0.012 (2) |
N2 | 0.117 (3) | 0.085 (3) | 0.082 (3) | 0.014 (3) | 0.009 (3) | 0.014 (2) |
C1 | 0.086 (3) | 0.076 (3) | 0.070 (3) | 0.000 (2) | −0.007 (2) | 0.003 (2) |
C2 | 0.081 (3) | 0.079 (3) | 0.064 (2) | 0.006 (2) | −0.017 (2) | 0.005 (2) |
C3 | 0.109 (4) | 0.098 (4) | 0.080 (3) | −0.017 (3) | −0.029 (3) | 0.002 (3) |
C4 | 0.099 (3) | 0.102 (4) | 0.066 (3) | −0.008 (3) | −0.012 (3) | 0.001 (3) |
C5 | 0.113 (4) | 0.079 (3) | 0.070 (3) | 0.017 (3) | −0.009 (3) | 0.011 (3) |
C6 | 0.114 (4) | 0.075 (3) | 0.079 (3) | −0.008 (3) | −0.017 (3) | 0.005 (3) |
C7 | 0.112 (4) | 0.079 (3) | 0.075 (3) | −0.005 (3) | −0.035 (3) | 0.003 (3) |
O1—C1 | 1.229 (5) | C2—C3 | 1.407 (7) |
O2—N2 | 1.221 (6) | C3—C4 | 1.362 (7) |
O3—N2 | 1.234 (5) | C3—H3A | 0.9300 |
N1—C1 | 1.346 (6) | C4—C5 | 1.368 (7) |
N1—N1i | 1.372 (7) | C4—H4A | 0.9300 |
N1—H1A | 0.8600 | C5—C6 | 1.400 (7) |
N2—C5 | 1.462 (6) | C6—C7 | 1.340 (7) |
C1—C2 | 1.488 (6) | C6—H6A | 0.9300 |
C2—C7 | 1.390 (7) | C7—H7A | 0.9300 |
C1—N1—N1i | 117.1 (5) | C2—C3—H3A | 119.6 |
C1—N1—H1A | 121.5 | C3—C4—C5 | 119.0 (5) |
N1i—N1—H1A | 121.5 | C3—C4—H4A | 120.5 |
O2—N2—O3 | 123.8 (5) | C5—C4—H4A | 120.5 |
O2—N2—C5 | 118.0 (5) | C4—C5—C6 | 120.8 (5) |
O3—N2—C5 | 118.1 (5) | C4—C5—N2 | 119.1 (5) |
O1—C1—N1 | 121.0 (4) | C6—C5—N2 | 119.8 (5) |
O1—C1—C2 | 123.5 (4) | C7—C6—C5 | 119.9 (5) |
N1—C1—C2 | 115.5 (4) | C7—C6—H6A | 120.0 |
C7—C2—C3 | 118.6 (5) | C5—C6—H6A | 120.0 |
C7—C2—C1 | 125.1 (5) | C6—C7—C2 | 120.6 (5) |
C3—C2—C1 | 116.3 (5) | C6—C7—H7A | 119.7 |
C4—C3—C2 | 120.9 (5) | C2—C7—H7A | 119.7 |
C4—C3—H3A | 119.6 | ||
N1i—N1—C1—O1 | 0.7 (8) | C3—C4—C5—N2 | −179.8 (5) |
N1i—N1—C1—C2 | 179.0 (5) | O2—N2—C5—C4 | 10.3 (7) |
O1—C1—C2—C7 | 148.0 (5) | O3—N2—C5—C4 | −166.2 (5) |
N1—C1—C2—C7 | −30.3 (7) | O2—N2—C5—C6 | −164.5 (5) |
O1—C1—C2—C3 | −31.9 (7) | O3—N2—C5—C6 | 19.0 (7) |
N1—C1—C2—C3 | 149.8 (5) | C4—C5—C6—C7 | 5.5 (8) |
C7—C2—C3—C4 | −3.0 (8) | N2—C5—C6—C7 | −179.8 (5) |
C1—C2—C3—C4 | 176.9 (5) | C5—C6—C7—C2 | −4.6 (8) |
C2—C3—C4—C5 | 3.8 (9) | C3—C2—C7—C6 | 3.4 (8) |
C3—C4—C5—C6 | −5.0 (8) | C1—C2—C7—C6 | −176.5 (5) |
Symmetry code: (i) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1ii | 0.86 | 2.12 | 2.881 (5) | 147 |
Symmetry code: (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C14H10N4O6 |
Mr | 330.26 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 4.7947 (6), 9.8750 (11), 14.9094 (17) |
β (°) | 99.05 (3) |
V (Å3) | 697.13 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.975, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1364, 1364, 673 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.220, 1.10 |
No. of reflections | 1364 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.15 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.12 | 2.881 (5) | 147.1 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
The authors acknowledge financial support by the Innovative and Entrepreneurial Project of Anhui Province for the Introduction of High-Level Talent (No. 2008Z038) and the Education Office of Anhui Province, China (No. KJ2007B227).
References
Cui, Z.-N., Wang, Z., Li, Y., Zhou, X.-Y., Ling, Y. & Yang, X.-L. (2007). Chin. J. Org. Chem. 27, 1300–1304. CAS Google Scholar
Enraf–Nonius. (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466. Web of Science CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Shang, J., Wang, Q.-M., Huang, R.-Q., Chen, L., Song, H.-B. & Mao, C.-H. (2005a). Acta Cryst. E61, o1043–o1045. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shang, J., Wang, Q.-M., Song, H.-B., Huang, R.-Q., Chen, L. & Mao, C.-H. (2005b). Acta Cryst. E61, o936–o938. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazides have been demonstrated to possess excellent biological activities (Cui et al., 2007; Li & Ban, 2009). Recently a great deal of hydrazides have been synthesized and characterized (Shang et al., 2005a,b; Zhang et al., 2009; Li & Ban, 2009). We also are interested in this field of research, we report here the crystal structure of the title compound.
The molecular structure of the title compound has crystallographically imposed inversion symmetry located in the middle of the N—N bond (Fig. 1). One intermolecular hydrogen bond N—H···O is observed in the crystal structure (Table 1).