metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1101-m1102

Tetra­aqua­bis­(isonicotinamide-κN1)nickel(II) bis­­(4-formyl­benzoate) dihydrate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 13 August 2009; accepted 14 August 2009; online 19 August 2009)

The asymmetric unit of the title complex, [Ni(C6H6N2O)2(H2O)4](C8H5O3)2·2H2O, contains one-half of the complex cation with the NiII atom located on an inversion center, a 4-formyl­benzoate (FB) counter-anion and an uncoordinated water mol­ecule. The four O atoms in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement and the slightly distorted octa­hedral coordination is completed by the two N atoms of the isonicotinamide (INA) ligands at a sligthly longer distance in the axial positions. The dihedral angle between the carboxyl­ate group and the attached benzene ring is 8.14 (11)°, while the pyridine and benzene rings are oriented at a dihedral angle of 3.46 (6)°. In the crystal structure, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ Contacts between the benzene and pyridine rings [centroid–centroid distance = 3.751 (1) Å] may further stabilize the crystal structure.

Related literature

For general background, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For related structures, see: Hökelek et al. (2009[Hökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m768-m769.]); Sertçelik et al. (2009[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m326-m327.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H6N2O)2(H2O)4](C8H5O3)2·2H2O

  • Mr = 709.28

  • Triclinic, [P \overline 1]

  • a = 6.4338 (1) Å

  • b = 6.9059 (2) Å

  • c = 18.1649 (3) Å

  • α = 81.658 (2)°

  • β = 85.160 (3)°

  • γ = 71.816 (1)°

  • V = 758.01 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 0.928

  • 14080 measured reflections

  • 3837 independent reflections

  • 3259 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 1.01

  • 3837 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O5 2.0444 (11)
Ni1—O6 2.0857 (11)
Ni1—N1 2.0978 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O7i 0.84 (2) 2.03 (2) 2.8518 (19) 163.7 (17)
N2—H22⋯O3ii 0.879 (19) 2.109 (18) 2.9662 (17) 165.1 (18)
O5—H51⋯O1iii 0.78 (3) 1.87 (2) 2.6485 (16) 177 (3)
O5—H52⋯O2 0.897 (19) 1.847 (19) 2.7349 (16) 169.6 (18)
O6—H61⋯O1iv 0.87 (3) 1.91 (3) 2.7792 (17) 175 (2)
O6—H62⋯O2v 0.84 (3) 1.94 (3) 2.7710 (17) 171 (3)
O7—H71⋯O3iii 0.81 (3) 2.11 (3) 2.9260 (19) 176 (2)
O7—H72⋯O4 0.84 (2) 1.90 (2) 2.7333 (18) 174 (2)
C9—H9⋯O7i 0.93 2.59 3.480 (2) 160
C12—H12⋯O5vi 0.93 2.44 3.193 (2) 138
Symmetry codes: (i) x-1, y, z; (ii) x+1, y-1, z+1; (iii) -x, -y+1, -z; (iv) x+1, y-1, z; (v) x, y-1, z; (vi) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a monomeric complex, with NiII ion on a centre of symmetry. The structures of some DENA and/or NA complexes of NiII ion, [Ni(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009) and [Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009) have also been determined.

In the title compound, INA ligands are monodentate. The four O atoms (O5, O6, and the symmetry-related atoms, O5', O6') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two pyridine N atoms (N1, N1') of the INA ligands at 2.0978 (12) Å from the Ni atom in the axial positions (Table 1, Fig. 1). The average Ni—O bond length is 2.0651 (11) Å. The O—H···O hydrogen bonds (Table 2) link the coordinated and uncoordinated water molecules to the FB anion and INA ligand, respectively. The dihedral angle between the carboxyl group (O1/O2/C1) and the benzene ring A (C2—C7) is 8.14 (11)°, while that between rings A and B (N1/C8—C12) is 3.46 (6)°.

In the crystal structure, the O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the benzene and pyridine rings, Cg1—Cg2, [where Cg1 and Cg2 are centroids of the rings A (C2—C7) and B (N1/C8—C12), respectively] may further stabilize the structure, with centroid-centroid distance of 3.751 (1) Å.

Related literature top

For general background, see: Bigoli et al. (1972); Krishnamachari (1974). For related structures, see: Hökelek et al. (2009); Sertçelik et al. (2009).

Experimental top

The title compound was prepared by the reaction of NiSO4.6H2O (1.31 g, 5 mmol) in H2O (25 ml) and INA (1.22 g, 10 mmol) in H2O (40 ml) with sodium 4-formylbenzoate (1.72 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving blue single crystals.

Refinement top

Atoms H51, H52, H61, H62, H71 and H72 (for H2O), H21 and H22 (for NH2) and H14 (for CH) were located in difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 Å, for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator:(') -x, -y, -z. Dashed lines indicate the hydrogen bonding.
Tetraaquabis(isonicotinamide-κN1)nickel(II) bis(4-formylbenzoate) dihydrate top
Crystal data top
[Ni(C6H6N2O)2(H2O)4](C8H5O3)2·2H2OZ = 1
Mr = 709.28F(000) = 370
Triclinic, P1Dx = 1.554 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4338 (1) ÅCell parameters from 5282 reflections
b = 6.9059 (2) Åθ = 4.1–28.3°
c = 18.1649 (3) ŵ = 0.72 mm1
α = 81.658 (2)°T = 100 K
β = 85.160 (3)°Block, blue
γ = 71.816 (1)°0.35 × 0.15 × 0.1 mm
V = 758.01 (3) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3837 independent reflections
Radiation source: fine-focus sealed tube3259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 28.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.876, Tmax = 0.928k = 99
14080 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
3837 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C6H6N2O)2(H2O)4](C8H5O3)2·2H2Oγ = 71.816 (1)°
Mr = 709.28V = 758.01 (3) Å3
Triclinic, P1Z = 1
a = 6.4338 (1) ÅMo Kα radiation
b = 6.9059 (2) ŵ = 0.72 mm1
c = 18.1649 (3) ÅT = 100 K
α = 81.658 (2)°0.35 × 0.15 × 0.1 mm
β = 85.160 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3837 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3259 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.928Rint = 0.067
14080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.50 e Å3
3837 reflectionsΔρmin = 0.47 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.00952 (9)
O10.32770 (17)0.69399 (18)0.08791 (6)0.0156 (2)
O20.02696 (17)0.55211 (17)0.11784 (6)0.0147 (2)
O30.5543 (2)0.7444 (2)0.46465 (6)0.0248 (3)
O40.62907 (18)0.23630 (19)0.31701 (6)0.0187 (3)
O50.18852 (18)0.19178 (18)0.02699 (6)0.0121 (2)
H510.228 (4)0.229 (4)0.0063 (13)0.050 (8)*
H520.124 (3)0.303 (3)0.0585 (10)0.027 (5)*
O60.23596 (19)0.24606 (18)0.04216 (6)0.0143 (2)
H610.370 (4)0.265 (4)0.0591 (12)0.048 (7)*
H620.181 (4)0.320 (4)0.0624 (12)0.040 (7)*
O70.8514 (2)0.1254 (2)0.41718 (7)0.0214 (3)
H710.771 (4)0.021 (4)0.4322 (13)0.055 (9)*
H720.775 (3)0.155 (3)0.3879 (12)0.037 (6)*
N10.1326 (2)0.0939 (2)0.10564 (7)0.0112 (3)
N20.3028 (2)0.1740 (2)0.37981 (7)0.0153 (3)
H210.166 (3)0.153 (3)0.3816 (10)0.024 (5)*
H220.369 (3)0.199 (3)0.4221 (10)0.021 (5)*
C10.1722 (2)0.6250 (2)0.13329 (8)0.0129 (3)
C20.2270 (2)0.6334 (2)0.21321 (8)0.0120 (3)
C30.4455 (2)0.6912 (2)0.23337 (8)0.0130 (3)
H30.55800.72180.19720.016*
C40.4939 (3)0.7027 (3)0.30658 (8)0.0149 (3)
H40.63910.74110.31980.018*
C50.3256 (3)0.6570 (3)0.36097 (8)0.0142 (3)
C60.1081 (3)0.5964 (3)0.34101 (8)0.0159 (3)
H60.00430.56310.37710.019*
C70.0597 (3)0.5859 (3)0.26751 (8)0.0144 (3)
H70.08550.54680.25430.017*
C80.0066 (2)0.0685 (2)0.16870 (8)0.0119 (3)
H80.14470.02680.16510.014*
C90.0914 (2)0.1014 (2)0.23847 (8)0.0126 (3)
H90.00170.08120.28060.015*
C100.3172 (2)0.1649 (2)0.24511 (8)0.0109 (3)
C110.4476 (2)0.1990 (3)0.18050 (8)0.0133 (3)
H110.59930.24650.18280.016*
C120.3506 (2)0.1620 (3)0.11290 (8)0.0139 (3)
H120.44060.18540.07020.017*
C130.4277 (3)0.1948 (2)0.31741 (8)0.0130 (3)
C140.3734 (3)0.6682 (3)0.43942 (9)0.0197 (4)
H140.245 (3)0.614 (3)0.4731 (10)0.021 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00852 (14)0.01296 (17)0.00766 (14)0.00363 (11)0.00026 (10)0.00235 (11)
O10.0131 (5)0.0221 (7)0.0133 (5)0.0060 (5)0.0003 (4)0.0068 (5)
O20.0121 (5)0.0168 (6)0.0160 (5)0.0042 (5)0.0035 (4)0.0032 (5)
O30.0253 (7)0.0314 (8)0.0150 (6)0.0030 (6)0.0067 (5)0.0039 (5)
O40.0123 (6)0.0267 (7)0.0168 (5)0.0033 (5)0.0039 (4)0.0063 (5)
O50.0122 (5)0.0151 (6)0.0101 (5)0.0055 (5)0.0011 (4)0.0017 (5)
O60.0111 (6)0.0176 (6)0.0159 (5)0.0048 (5)0.0010 (4)0.0072 (5)
O70.0168 (6)0.0307 (8)0.0180 (6)0.0065 (6)0.0018 (5)0.0082 (6)
N10.0110 (6)0.0121 (7)0.0110 (6)0.0038 (5)0.0009 (5)0.0034 (5)
N20.0139 (7)0.0222 (8)0.0098 (6)0.0043 (6)0.0040 (5)0.0028 (6)
C10.0153 (8)0.0106 (8)0.0149 (7)0.0060 (7)0.0018 (6)0.0024 (6)
C20.0139 (7)0.0094 (8)0.0138 (7)0.0047 (6)0.0022 (6)0.0022 (6)
C30.0123 (7)0.0128 (8)0.0133 (7)0.0025 (6)0.0002 (6)0.0028 (6)
C40.0134 (7)0.0157 (9)0.0151 (7)0.0028 (7)0.0028 (6)0.0023 (7)
C50.0180 (8)0.0136 (8)0.0118 (7)0.0056 (7)0.0020 (6)0.0017 (6)
C60.0167 (8)0.0157 (9)0.0143 (7)0.0035 (7)0.0026 (6)0.0035 (7)
C70.0127 (7)0.0126 (8)0.0174 (7)0.0029 (6)0.0017 (6)0.0019 (7)
C80.0097 (7)0.0135 (8)0.0126 (7)0.0034 (6)0.0007 (5)0.0019 (6)
C90.0127 (7)0.0142 (8)0.0105 (7)0.0038 (6)0.0009 (6)0.0022 (6)
C100.0129 (7)0.0085 (8)0.0117 (7)0.0033 (6)0.0019 (6)0.0021 (6)
C110.0103 (7)0.0149 (8)0.0146 (7)0.0037 (6)0.0008 (6)0.0021 (6)
C120.0113 (7)0.0172 (9)0.0125 (7)0.0033 (7)0.0018 (6)0.0033 (6)
C130.0148 (8)0.0105 (8)0.0137 (7)0.0026 (6)0.0030 (6)0.0027 (6)
C140.0242 (9)0.0203 (10)0.0133 (7)0.0047 (8)0.0008 (7)0.0033 (7)
Geometric parameters (Å, º) top
Ni1—O52.0444 (11)C2—C71.391 (2)
Ni1—O5i2.0444 (11)C3—C21.401 (2)
Ni1—O62.0857 (11)C3—C41.377 (2)
Ni1—O6i2.0857 (11)C3—H30.9300
Ni1—N12.0978 (12)C4—H40.9300
Ni1—N1i2.0978 (12)C5—C41.395 (2)
O1—C11.2587 (18)C5—C61.393 (2)
O2—C11.2616 (18)C5—C141.469 (2)
O3—C141.216 (2)C6—C71.383 (2)
O4—C131.2359 (18)C6—H60.9300
O5—H510.78 (2)C7—H70.9300
O5—H520.90 (2)C8—H80.9300
O6—H610.86 (2)C9—C81.382 (2)
O6—H620.84 (2)C9—C101.391 (2)
O7—H710.82 (3)C9—H90.9300
O7—H720.84 (2)C10—C111.388 (2)
N1—C81.3465 (18)C10—C131.503 (2)
N1—C121.3444 (19)C11—C121.379 (2)
N2—C131.3316 (19)C11—H110.9300
N2—H210.84 (2)C12—H120.9300
N2—H220.879 (19)C14—H140.991 (18)
C2—C11.511 (2)
O5i—Ni1—O5180.00 (6)C4—C3—C2120.18 (14)
O5—Ni1—O692.91 (5)C4—C3—H3119.9
O5i—Ni1—O687.09 (5)C3—C4—C5120.09 (14)
O5—Ni1—O6i87.09 (5)C3—C4—H4120.0
O5i—Ni1—O6i92.91 (5)C5—C4—H4120.0
O5—Ni1—N191.09 (5)C4—C5—C6119.94 (14)
O5i—Ni1—N188.91 (5)C4—C5—C14121.06 (14)
O5—Ni1—N1i88.91 (5)C6—C5—C14119.00 (14)
O5i—Ni1—N1i91.09 (5)C5—C6—H6120.1
O6—Ni1—O6i180.00 (8)C7—C6—C5119.89 (14)
O6—Ni1—N190.55 (5)C7—C6—H6120.1
O6i—Ni1—N189.45 (5)C2—C7—H7119.8
O6—Ni1—N1i89.45 (5)C6—C7—C2120.35 (14)
O6i—Ni1—N1i90.55 (5)C6—C7—H7119.8
N1—Ni1—N1i180.00 (3)N1—C8—C9123.15 (14)
Ni1—O5—H51116.0 (17)N1—C8—H8118.4
Ni1—O5—H52112.8 (12)C9—C8—H8118.4
H52—O5—H51108 (2)C8—C9—C10119.38 (13)
Ni1—O6—H61133.3 (16)C8—C9—H9120.3
Ni1—O6—H62112.7 (15)C10—C9—H9120.3
H61—O6—H62109 (2)C9—C10—C13124.09 (13)
H71—O7—H72104 (2)C11—C10—C9117.58 (13)
C8—N1—Ni1121.97 (10)C11—C10—C13118.32 (13)
C12—N1—Ni1120.69 (9)C10—C11—H11120.2
C12—N1—C8116.97 (13)C12—C11—C10119.56 (14)
C13—N2—H21124.0 (12)C12—C11—H11120.2
C13—N2—H22117.6 (12)N1—C12—C11123.27 (13)
H21—N2—H22118.0 (17)N1—C12—H12118.4
O1—C1—O2125.32 (14)C11—C12—H12118.4
O1—C1—C2117.63 (14)O4—C13—N2122.48 (14)
O2—C1—C2117.04 (13)O4—C13—C10119.41 (13)
C3—C2—C1120.57 (13)N2—C13—C10118.11 (13)
C7—C2—C1119.88 (14)O3—C14—C5124.44 (15)
C7—C2—C3119.54 (14)O3—C14—H14119.8 (10)
C2—C3—H3119.9C5—C14—H14115.7 (10)
O5—Ni1—N1—C8120.80 (12)C4—C3—C2—C70.6 (2)
O5i—Ni1—N1—C859.20 (12)C2—C3—C4—C50.0 (2)
O5—Ni1—N1—C1251.98 (12)C6—C5—C4—C31.0 (2)
O5i—Ni1—N1—C12128.02 (12)C14—C5—C4—C3179.97 (15)
O6—Ni1—N1—C8146.28 (12)C4—C5—C6—C71.3 (2)
O6i—Ni1—N1—C833.72 (12)C14—C5—C6—C7179.69 (15)
O6—Ni1—N1—C1240.95 (12)C4—C5—C14—O311.3 (3)
O6i—Ni1—N1—C12139.05 (12)C6—C5—C14—O3169.77 (17)
Ni1—N1—C8—C9170.46 (12)C5—C6—C7—C20.7 (2)
C12—N1—C8—C92.6 (2)C10—C9—C8—N10.4 (2)
Ni1—N1—C12—C11170.82 (12)C8—C9—C10—C112.1 (2)
C8—N1—C12—C112.3 (2)C8—C9—C10—C13176.67 (14)
C3—C2—C1—O18.1 (2)C9—C10—C11—C122.4 (2)
C3—C2—C1—O2173.07 (14)C13—C10—C11—C12176.49 (14)
C7—C2—C1—O1171.16 (14)C9—C10—C13—O4174.45 (15)
C7—C2—C1—O27.7 (2)C9—C10—C13—N25.2 (2)
C1—C2—C7—C6178.93 (14)C11—C10—C13—O44.3 (2)
C3—C2—C7—C60.3 (2)C11—C10—C13—N2176.04 (15)
C4—C3—C2—C1178.61 (14)C10—C11—C12—N10.2 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O7ii0.84 (2)2.03 (2)2.8518 (19)163.7 (17)
N2—H22···O3iii0.879 (19)2.109 (18)2.9662 (17)165.1 (18)
O5—H51···O1iv0.78 (3)1.87 (2)2.6485 (16)177 (3)
O5—H52···O20.897 (19)1.847 (19)2.7349 (16)169.6 (18)
O6—H61···O1v0.87 (3)1.91 (3)2.7792 (17)175 (2)
O6—H62···O2vi0.84 (3)1.94 (3)2.7710 (17)171 (3)
O7—H71···O3iv0.81 (3)2.11 (3)2.9260 (19)176 (2)
O7—H72···O40.84 (2)1.90 (2)2.7333 (18)174 (2)
C9—H9···O7ii0.932.593.480 (2)160
C12—H12···O5vii0.932.443.193 (2)138
Symmetry codes: (ii) x1, y, z; (iii) x+1, y1, z+1; (iv) x, y+1, z; (v) x+1, y1, z; (vi) x, y1, z; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C6H6N2O)2(H2O)4](C8H5O3)2·2H2O
Mr709.28
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.4338 (1), 6.9059 (2), 18.1649 (3)
α, β, γ (°)81.658 (2), 85.160 (3), 71.816 (1)
V3)758.01 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.35 × 0.15 × 0.1
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.876, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
14080, 3837, 3259
Rint0.067
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 1.01
No. of reflections3837
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.47

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—O52.0444 (11)Ni1—N12.0978 (12)
Ni1—O62.0857 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O7i0.84 (2)2.03 (2)2.8518 (19)163.7 (17)
N2—H22···O3ii0.879 (19)2.109 (18)2.9662 (17)165.1 (18)
O5—H51···O1iii0.78 (3)1.87 (2)2.6485 (16)177 (3)
O5—H52···O20.897 (19)1.847 (19)2.7349 (16)169.6 (18)
O6—H61···O1iv0.87 (3)1.91 (3)2.7792 (17)175 (2)
O6—H62···O2v0.84 (3)1.94 (3)2.7710 (17)171 (3)
O7—H71···O3iii0.81 (3)2.11 (3)2.9260 (19)176 (2)
O7—H72···O40.84 (2)1.90 (2)2.7333 (18)174 (2)
C9—H9···O7i0.932.593.480 (2)160.00
C12—H12···O5vi0.932.443.193 (2)138.00
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z+1; (iii) x, y+1, z; (iv) x+1, y1, z; (v) x, y1, z; (vi) x+1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m768–m769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m326–m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1101-m1102
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds