organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Bromo-4-meth­oxy­benzyl­­idene)nicotinohydrazide monohydrate

aDepartment of Applied Chemistry, College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China, and bLiangbaosi First School, Jiaxiang County, Shandong Province 272404, People's Republic of China
*Correspondence e-mail: bfyu2008@126.com

(Received 21 August 2009; accepted 25 August 2009; online 29 August 2009)

In the title compound, C14H12BrN3O2·H2O, the benzene ring is oriented at a dihedral angle of 39.66 (11)° with respect to the pyridine ring. The solvent water mol­ecule links with the organic compound via O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonding.

Related literature

For applications of Schiff base compounds, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12BrN3O2·H2O

  • Mr = 352.18

  • Monoclinic, P 21 /c

  • a = 7.7979 (1) Å

  • b = 12.5678 (2) Å

  • c = 14.9419 (3) Å

  • β = 97.449 (1)°

  • V = 1451.98 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.85 mm−1

  • T = 296 K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.400, Tmax = 0.535

  • 12611 measured reflections

  • 3149 independent reflections

  • 2525 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.069

  • S = 1.01

  • 3149 reflections

  • 198 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N3 0.85 (2) 2.05 (2) 2.886 (2) 168 (2)
O2—H2B⋯O1i 0.82 (3) 2.47 (3) 3.118 (2) 136 (2)
O2—H2B⋯N1i 0.82 (3) 2.43 (3) 3.197 (2) 156 (3)
N2—H2⋯O2ii 0.86 2.18 2.982 (2) 155
Symmetry codes: (i) -x, -y+1, -z-1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of Schiff bases has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our interest in the coordination chemistry of Schiff bases, we have recently synthesized the title compound and report here its crystal structure.

The title molecule crystallizes in the E conformation, with the C8—N1—N2—C9 torsion angle of 170.02 (19)°. The molecular is non-planar, there is a dihedral angle of 39.66 (11)° between the benzene ring and the pyridine ring. In the crystal structure, the lattice water molecule links with the organic compound via O—H···O, O—H···N and N—H···O hydrogen bonding.

Related literature top

For applications of Schiff base compounds, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

Nicotinohydrazide (1 mmol, 0.137 g) was dissolved in ethanol (15 ml). The mixture was stirred for several min at 351 K, then 3-bromo-4-methoxybenzaldehyde (1 mmol, 0.215 g) in ethanol (8 mm l) was added dropwise and the mixture was refluxed for 2 h. The solid product was isolated and recrystallized from methanol, colourless single crystals were obtained after 3 d.

Refinement top

H atoms of water molecule are located in a difference Fourier map and refined isotropically, with O—H and H···H distances restrained to 0.85 (1) and 1.37 (2) Å, respectively. Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and refined with Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
N'-(3-Bromo-4-methoxybenzylidene)nicotinohydrazide monohydrate top
Crystal data top
C14H12BrN3O2·H2OF(000) = 712
Mr = 352.18Dx = 1.611 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4706 reflections
a = 7.7979 (1) Åθ = 3.1–27.0°
b = 12.5678 (2) ŵ = 2.85 mm1
c = 14.9419 (3) ÅT = 296 K
β = 97.449 (1)°Block, colourless
V = 1451.98 (4) Å30.43 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3149 independent reflections
Radiation source: fine-focus sealed tube2525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.400, Tmax = 0.535k = 1616
12611 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.4288P]
where P = (Fo2 + 2Fc2)/3
3149 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H12BrN3O2·H2OV = 1451.98 (4) Å3
Mr = 352.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7979 (1) ŵ = 2.85 mm1
b = 12.5678 (2) ÅT = 296 K
c = 14.9419 (3) Å0.43 × 0.28 × 0.22 mm
β = 97.449 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3149 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2525 reflections with I > 2σ(I)
Tmin = 0.400, Tmax = 0.535Rint = 0.027
12611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0272 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.41 e Å3
3149 reflectionsΔρmin = 0.30 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.38290 (3)0.882695 (16)0.139661 (15)0.04825 (10)
O10.0836 (2)0.53946 (11)0.37189 (9)0.0481 (4)
N10.0118 (2)0.66340 (13)0.22564 (10)0.0364 (4)
C20.2856 (2)0.77093 (14)0.06618 (12)0.0319 (4)
C60.1504 (3)0.70831 (15)0.07779 (12)0.0330 (4)
N20.0635 (2)0.70309 (13)0.30777 (10)0.0373 (4)
H20.07920.77040.31500.045*
C50.1501 (3)0.60611 (15)0.04249 (14)0.0389 (5)
H5A0.10640.55010.07920.047*
O0.3473 (2)0.65767 (12)0.19064 (9)0.0467 (4)
N30.2839 (3)0.66239 (14)0.61976 (11)0.0445 (4)
C130.3787 (3)0.81441 (17)0.54493 (14)0.0416 (5)
H13A0.44060.87790.54840.050*
C10.2194 (3)0.79090 (15)0.02219 (12)0.0344 (4)
H1A0.22070.85980.04480.041*
C140.2933 (3)0.78026 (16)0.46379 (13)0.0373 (4)
H14A0.29560.82070.41180.045*
C120.3718 (3)0.75404 (18)0.62074 (13)0.0438 (5)
H12A0.43060.77770.67520.053*
C110.2044 (3)0.62932 (16)0.54085 (13)0.0386 (5)
H11A0.14530.56490.53920.046*
C100.2041 (2)0.68508 (15)0.46049 (12)0.0313 (4)
C30.2824 (3)0.66925 (15)0.10238 (12)0.0336 (4)
C40.2141 (3)0.58670 (16)0.04669 (13)0.0386 (5)
H4A0.21160.51800.06960.046*
C80.0758 (3)0.73423 (16)0.17017 (13)0.0373 (4)
H8A0.07510.80480.18900.045*
C70.3529 (4)0.55397 (18)0.22835 (15)0.0573 (7)
H7A0.40140.55730.29070.086*
H7B0.42330.50890.19620.086*
H7C0.23790.52550.22370.086*
C90.1121 (3)0.63517 (15)0.37660 (12)0.0332 (4)
O20.1669 (3)0.57231 (13)0.77890 (10)0.0521 (4)
H2A0.214 (3)0.5932 (19)0.7336 (13)0.068 (9)*
H2B0.110 (3)0.519 (2)0.7634 (19)0.072 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06384 (18)0.03325 (12)0.04243 (13)0.00024 (10)0.01295 (10)0.01048 (9)
O10.0686 (11)0.0340 (8)0.0379 (8)0.0075 (7)0.0074 (7)0.0026 (6)
N10.0453 (10)0.0359 (8)0.0259 (8)0.0031 (8)0.0035 (7)0.0004 (7)
C20.0353 (11)0.0284 (9)0.0298 (9)0.0003 (8)0.0036 (8)0.0066 (7)
C60.0352 (11)0.0358 (10)0.0265 (9)0.0022 (8)0.0014 (8)0.0018 (8)
N20.0513 (11)0.0315 (8)0.0260 (8)0.0006 (7)0.0065 (7)0.0007 (6)
C50.0460 (13)0.0336 (10)0.0345 (10)0.0031 (9)0.0050 (9)0.0054 (8)
O0.0678 (11)0.0386 (8)0.0292 (7)0.0033 (7)0.0105 (7)0.0033 (6)
N30.0600 (12)0.0418 (10)0.0293 (8)0.0012 (9)0.0031 (8)0.0037 (7)
C130.0437 (13)0.0374 (10)0.0419 (11)0.0047 (9)0.0008 (9)0.0031 (9)
C10.0391 (12)0.0299 (9)0.0323 (9)0.0027 (8)0.0020 (8)0.0009 (8)
C140.0414 (12)0.0377 (10)0.0322 (10)0.0007 (9)0.0021 (8)0.0052 (8)
C120.0507 (14)0.0457 (12)0.0318 (10)0.0048 (10)0.0074 (9)0.0049 (9)
C110.0499 (13)0.0342 (10)0.0300 (10)0.0010 (9)0.0011 (9)0.0027 (8)
C100.0328 (11)0.0329 (9)0.0270 (9)0.0053 (8)0.0003 (8)0.0013 (7)
C30.0371 (11)0.0350 (10)0.0270 (9)0.0045 (9)0.0022 (8)0.0004 (8)
C40.0500 (13)0.0282 (9)0.0353 (10)0.0017 (9)0.0028 (9)0.0032 (8)
C80.0429 (12)0.0372 (10)0.0299 (9)0.0001 (9)0.0020 (8)0.0005 (8)
C70.0838 (19)0.0451 (13)0.0387 (12)0.0038 (12)0.0086 (11)0.0144 (10)
C90.0384 (11)0.0335 (10)0.0270 (9)0.0006 (8)0.0016 (8)0.0018 (7)
O20.0845 (13)0.0375 (8)0.0337 (8)0.0076 (9)0.0059 (8)0.0042 (7)
Geometric parameters (Å, º) top
Br1—C21.8810 (17)C13—C141.374 (3)
O1—C91.224 (2)C13—H13A0.9300
N1—C81.273 (2)C1—H1A0.9300
N1—N21.383 (2)C14—C101.382 (3)
C2—C11.377 (2)C14—H14A0.9300
C2—C31.389 (3)C12—H12A0.9300
C6—C51.389 (3)C11—C101.390 (3)
C6—C11.393 (3)C11—H11A0.9300
C6—C81.463 (3)C10—C91.499 (3)
N2—C91.352 (2)C3—C41.392 (3)
N2—H20.8600C4—H4A0.9300
C5—C41.383 (3)C8—H8A0.9300
C5—H5A0.9300C7—H7A0.9600
O—C31.358 (2)C7—H7B0.9600
O—C71.418 (3)C7—H7C0.9600
N3—C111.326 (3)O2—H2A0.85 (2)
N3—C121.340 (3)O2—H2B0.82 (3)
C13—C121.370 (3)
C8—N1—N2114.26 (16)C13—C12—H12A118.6
C1—C2—C3121.17 (17)N3—C11—C10123.96 (19)
C1—C2—Br1119.76 (14)N3—C11—H11A118.0
C3—C2—Br1119.07 (13)C10—C11—H11A118.0
C5—C6—C1118.83 (17)C14—C10—C11117.46 (18)
C5—C6—C8122.96 (17)C14—C10—C9125.20 (17)
C1—C6—C8118.18 (17)C11—C10—C9117.30 (17)
C9—N2—N1119.48 (16)O—C3—C2116.98 (17)
C9—N2—H2120.3O—C3—C4124.49 (17)
N1—N2—H2120.3C2—C3—C4118.54 (17)
C4—C5—C6120.74 (18)C5—C4—C3120.46 (18)
C4—C5—H5A119.6C5—C4—H4A119.8
C6—C5—H5A119.6C3—C4—H4A119.8
C3—O—C7118.23 (16)N1—C8—C6122.20 (18)
C11—N3—C12117.32 (17)N1—C8—H8A118.9
C12—C13—C14119.3 (2)C6—C8—H8A118.9
C12—C13—H13A120.3O—C7—H7A109.5
C14—C13—H13A120.3O—C7—H7B109.5
C2—C1—C6120.25 (17)H7A—C7—H7B109.5
C2—C1—H1A119.9O—C7—H7C109.5
C6—C1—H1A119.9H7A—C7—H7C109.5
C13—C14—C10119.09 (19)H7B—C7—H7C109.5
C13—C14—H14A120.5O1—C9—N2123.08 (18)
C10—C14—H14A120.5O1—C9—C10121.55 (17)
N3—C12—C13122.83 (19)N2—C9—C10115.38 (16)
N3—C12—H12A118.6H2A—O2—H2B107 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N30.85 (2)2.05 (2)2.886 (2)168 (2)
O2—H2B···O1i0.82 (3)2.47 (3)3.118 (2)136 (2)
O2—H2B···N1i0.82 (3)2.43 (3)3.197 (2)156 (3)
N2—H2···O2ii0.862.182.982 (2)155
Symmetry codes: (i) x, y+1, z1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H12BrN3O2·H2O
Mr352.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.7979 (1), 12.5678 (2), 14.9419 (3)
β (°) 97.449 (1)
V3)1451.98 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.85
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.400, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
12611, 3149, 2525
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.01
No. of reflections3149
No. of parameters198
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.30

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N30.85 (2)2.05 (2)2.886 (2)168 (2)
O2—H2B···O1i0.82 (3)2.47 (3)3.118 (2)136 (2)
O2—H2B···N1i0.82 (3)2.43 (3)3.197 (2)156 (3)
N2—H2···O2ii0.862.182.982 (2)155
Symmetry codes: (i) x, y+1, z1; (ii) x, y+1/2, z1/2.
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds