organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Bromo­phen­yl)-2-methyl-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 17 August 2009; accepted 22 August 2009; online 29 August 2009)

In the title compound, C16H13BrO2S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The 4-bromo­phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 39.23 (8)°. The crystal structure exhibits weak non-classical inter­molecular C—H⋯O hydrogen bonds and two inter­molecular C—H⋯π inter­actions.

Related literature

For the crystal structures of similar 5-aryl-2-methyl-1-benzofuran derivatives, see: Choi et al. (2006a[Choi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006a). Acta Cryst. E62, o4253-o4254.],b[Choi, H. D., Seo, P. J., Lee, H. K., Son, B. W. & Lee, U. (2006b). Acta Cryst. E62, o4480-o4481.]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Twyman & Allsop (1999[Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383-9384.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); von Reuss & König (2004[Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113-3118.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO2S

  • Mr = 349.23

  • Monoclinic, P 21 /c

  • a = 11.410 (1) Å

  • b = 7.9508 (8) Å

  • c = 15.728 (2) Å

  • β = 99.399 (1)°

  • V = 1407.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.07 mm−1

  • T = 173 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.460, Tmax = 0.579

  • 8551 measured reflections

  • 3195 independent reflections

  • 2551 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.076

  • S = 1.04

  • 3195 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.66 3.416 (3) 139
C15—H15B⋯O1ii 0.96 2.66 3.380 (3) 132
C16—H16A⋯O2i 0.96 2.63 3.463 (3) 145
C13—H13⋯Cg2iii 0.93 2.86 3.624 (3) 140
C16—H16BCg1iv 0.96 2.90 3.768 (3) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1. Cg1 and Cg2 are the centroids of the C9–C14 phenyl ring and the C1/C2/C7/O2/C8 furan ring, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran ring systems have attracted particular interest in the view of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999), and these compounds are occurring in natural products (Akgul & Anil, 2003; von Reuss & König, 2004). As a part of our ongoing studies on the synthesis and structures of 5-aryl-2-methyl-1-benzofuran analogues, the crystal structure of 5-(4-bromophenyl)-2-methyl-3-methylsulfanyl-1-benzofuran (Choi et al., 2006a) and 2-methyl-3-methylsulfinyl-5-phenyl-1-benzofuran (Choi et al., 2006b) have been described in the literature. Here we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.005 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-bromophenyl ring is rotated out of the benzofuran plane, with a dihedral angle of 39.23 (8)°. The molecular packing (Fig. 2) is stabilized by weak non-classical intermolecular C–H···O hydrogen bonds; the first between the 4-bromophenyl H atom and the furan O atom, with C10–H10···O2i, the second between the methyl H atom and the oxygen of the SO unit, with C15–H15B···O1ii, the third between the methyl H atom of the methylsulfinyl substituent and the furan O atom, with C16–H16A···O2i, respectively (Table 1). The crystal packing (Fig. 3) is further stabilized by two intermolecular C–H···π interactions; the first between the 4-bromophenyl H atom and the furan ring of a neighbouring molecule, with C13–H13···Cg2iii, the second between the methyl H atom of the methylsulfinyl substituent and the 4-bromophenyl ring of an adjacent molecule, with C16–H16B···Cg1iv, respectively (Table 1; Cg1 and Cg2 are the centroids of the C9-C14 phenyl ring and the C1/C2/C7/O2/C8 furan ring, respectively).

Related literature top

For the crystal structures of similar 5-aryl-2-methyl-1-benzofuran derivatives, see: Choi et al. (2006a,b). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); von Reuss & König (2004). Cg1 and Cg2 are the centroids of the C9–C14 phenyl ring and

the C1/C2/C7/O2/C8 furan ring, respectively

Experimental top

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 5-(4-bromophenyl)-2-methyl-3-methylsulfanyl-1-benzofuran (333 mg, 1.0 mmol) in dichloromethane (40 ml) at 273 K. After being stirred for 4 hr at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 78%, m.p. 458-459 K; Rf = 0.31 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis; EI-MS 348 [M+], 350 [M+2].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.93 Å for the aryl and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O interactions (dotted lines) in the title compound. [Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y+1, -z+1.]
[Figure 3] Fig. 3. C–H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry codes: (iii) -x+1, y+1/2, -z+1/2; (iv) -x + 1, -y+1, -z+1.]
5-(4-Bromophenyl)-2-methyl-3-methylsulfinyl-1-benzofuran top
Crystal data top
C16H13BrO2SF(000) = 704
Mr = 349.23Dx = 1.648 Mg m3
Monoclinic, P21/cMelting point = 458–459 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.410 (1) ÅCell parameters from 4055 reflections
b = 7.9508 (8) Åθ = 2.4–27.5°
c = 15.728 (2) ŵ = 3.07 mm1
β = 99.399 (1)°T = 173 K
V = 1407.7 (3) Å3Block, colorless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3195 independent reflections
Radiation source: fine-focus sealed tube2551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.8°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1010
Tmin = 0.460, Tmax = 0.579l = 1320
8551 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.076H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.3706P]
where P = (Fo2 + 2Fc2)/3
3195 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C16H13BrO2SV = 1407.7 (3) Å3
Mr = 349.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.410 (1) ŵ = 3.07 mm1
b = 7.9508 (8) ÅT = 173 K
c = 15.728 (2) Å0.30 × 0.30 × 0.20 mm
β = 99.399 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3195 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2551 reflections with I > 2σ(I)
Tmin = 0.460, Tmax = 0.579Rint = 0.035
8551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
3195 reflectionsΔρmin = 0.43 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.03613 (2)0.52211 (3)0.242047 (16)0.03659 (10)
S0.73123 (5)0.01241 (6)0.54088 (4)0.02489 (13)
O10.86485 (12)0.41164 (18)0.44262 (10)0.0257 (3)
O20.64757 (15)0.0857 (2)0.47714 (11)0.0356 (4)
C10.75941 (18)0.2037 (2)0.49091 (13)0.0212 (4)
C20.67604 (18)0.3123 (2)0.43719 (13)0.0210 (4)
C30.55377 (18)0.3170 (2)0.41169 (13)0.0225 (4)
H30.50540.23560.43060.027*
C40.50462 (19)0.4463 (3)0.35708 (14)0.0226 (4)
C50.5801 (2)0.5711 (3)0.33141 (15)0.0264 (5)
H50.54630.65770.29590.032*
C60.7013 (2)0.5696 (3)0.35685 (14)0.0273 (5)
H60.74990.65250.33970.033*
C70.74681 (18)0.4375 (3)0.40949 (14)0.0229 (4)
C80.86971 (18)0.2669 (3)0.49163 (14)0.0238 (4)
C90.37431 (19)0.4570 (2)0.32810 (14)0.0222 (4)
C100.29488 (19)0.4165 (3)0.38373 (13)0.0235 (4)
H100.32420.37740.43880.028*
C110.17330 (19)0.4334 (3)0.35854 (14)0.0256 (5)
H110.12140.40530.39620.031*
C120.1300 (2)0.4926 (3)0.27679 (15)0.0263 (5)
C130.2063 (2)0.5303 (3)0.21940 (15)0.0307 (5)
H130.17630.56790.16410.037*
C140.3277 (2)0.5114 (3)0.24500 (15)0.0283 (5)
H140.37890.53530.20630.034*
C150.98997 (18)0.2164 (3)0.53466 (16)0.0308 (5)
H15A0.98510.11140.56400.046*
H15B1.02150.30120.57560.046*
H15C1.04110.20400.49230.046*
C160.6480 (2)0.0947 (3)0.61869 (15)0.0338 (5)
H16A0.57560.14390.58950.051*
H16B0.69420.17900.65280.051*
H16C0.62960.00540.65540.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.02728 (13)0.04720 (17)0.03369 (15)0.00609 (10)0.00023 (10)0.00305 (11)
S0.0277 (3)0.0206 (3)0.0263 (3)0.0030 (2)0.0041 (2)0.0032 (2)
O10.0247 (8)0.0238 (8)0.0286 (8)0.0054 (6)0.0047 (6)0.0041 (6)
O20.0416 (10)0.0281 (8)0.0358 (9)0.0115 (7)0.0027 (8)0.0036 (7)
C10.0264 (10)0.0180 (10)0.0195 (10)0.0035 (8)0.0044 (8)0.0012 (8)
C20.0285 (11)0.0174 (9)0.0178 (10)0.0026 (8)0.0062 (8)0.0021 (8)
C30.0271 (11)0.0181 (10)0.0231 (11)0.0043 (8)0.0061 (9)0.0005 (8)
C40.0267 (11)0.0221 (10)0.0199 (10)0.0006 (8)0.0060 (9)0.0022 (8)
C50.0327 (12)0.0228 (10)0.0247 (11)0.0015 (9)0.0079 (9)0.0047 (9)
C60.0327 (12)0.0219 (11)0.0294 (12)0.0049 (9)0.0112 (10)0.0032 (9)
C70.0254 (11)0.0216 (10)0.0224 (11)0.0042 (8)0.0059 (9)0.0034 (9)
C80.0287 (11)0.0207 (10)0.0226 (11)0.0036 (9)0.0059 (9)0.0003 (8)
C90.0281 (11)0.0172 (9)0.0215 (11)0.0001 (8)0.0042 (9)0.0002 (8)
C100.0319 (11)0.0208 (10)0.0178 (10)0.0004 (9)0.0041 (9)0.0023 (8)
C110.0289 (11)0.0265 (11)0.0227 (11)0.0022 (9)0.0080 (9)0.0001 (9)
C120.0253 (11)0.0266 (11)0.0264 (12)0.0017 (8)0.0023 (9)0.0027 (9)
C130.0354 (12)0.0350 (12)0.0210 (11)0.0005 (10)0.0024 (10)0.0047 (10)
C140.0310 (12)0.0336 (12)0.0216 (11)0.0014 (9)0.0080 (9)0.0035 (9)
C150.0259 (11)0.0283 (12)0.0376 (13)0.0052 (9)0.0036 (10)0.0024 (10)
C160.0380 (13)0.0381 (13)0.0268 (12)0.0047 (10)0.0103 (10)0.0019 (10)
Geometric parameters (Å, º) top
Br—C121.900 (2)C8—C151.483 (3)
S—O21.4874 (17)C9—C101.396 (3)
S—C11.766 (2)C9—C141.397 (3)
S—C161.791 (2)C10—C111.386 (3)
O1—C71.378 (3)C10—H100.9300
O1—C81.381 (2)C11—C121.382 (3)
C1—C81.353 (3)C11—H110.9300
C1—C21.450 (3)C12—C131.385 (3)
C2—C31.388 (3)C13—C141.386 (3)
C2—C71.396 (3)C13—H130.9300
C3—C41.397 (3)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.415 (3)C15—H15B0.9600
C4—C91.485 (3)C15—H15C0.9600
C5—C61.376 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.385 (3)C16—H16C0.9600
C6—H60.9300
O2—S—C1107.18 (10)C10—C9—C4120.96 (19)
O2—S—C16107.39 (11)C14—C9—C4120.94 (19)
C1—S—C1698.32 (11)C11—C10—C9121.36 (19)
C7—O1—C8106.44 (15)C11—C10—H10119.3
C8—C1—C2107.74 (17)C9—C10—H10119.3
C8—C1—S123.55 (16)C12—C11—C10119.2 (2)
C2—C1—S128.51 (15)C12—C11—H11120.4
C3—C2—C7119.74 (19)C10—C11—H11120.4
C3—C2—C1135.85 (18)C11—C12—C13120.8 (2)
C7—C2—C1104.40 (17)C11—C12—Br119.84 (17)
C2—C3—C4118.77 (19)C13—C12—Br119.31 (18)
C2—C3—H3120.6C12—C13—C14119.5 (2)
C4—C3—H3120.6C12—C13—H13120.3
C3—C4—C5119.3 (2)C14—C13—H13120.3
C3—C4—C9120.81 (19)C13—C14—C9121.0 (2)
C5—C4—C9119.84 (19)C13—C14—H14119.5
C6—C5—C4122.7 (2)C9—C14—H14119.5
C6—C5—H5118.6C8—C15—H15A109.5
C4—C5—H5118.6C8—C15—H15B109.5
C5—C6—C7116.20 (19)H15A—C15—H15B109.5
C5—C6—H6121.9C8—C15—H15C109.5
C7—C6—H6121.9H15A—C15—H15C109.5
O1—C7—C6125.96 (18)H15B—C15—H15C109.5
O1—C7—C2110.80 (18)S—C16—H16A109.5
C6—C7—C2123.2 (2)S—C16—H16B109.5
C1—C8—O1110.61 (18)H16A—C16—H16B109.5
C1—C8—C15133.9 (2)S—C16—H16C109.5
O1—C8—C15115.47 (17)H16A—C16—H16C109.5
C10—C9—C14118.1 (2)H16B—C16—H16C109.5
O2—S—C1—C8131.80 (18)C1—C2—C7—C6179.2 (2)
C16—S—C1—C8117.0 (2)C2—C1—C8—O10.7 (2)
O2—S—C1—C242.4 (2)S—C1—C8—O1175.91 (14)
C16—S—C1—C268.8 (2)C2—C1—C8—C15178.9 (2)
C8—C1—C2—C3179.4 (2)S—C1—C8—C155.9 (4)
S—C1—C2—C35.6 (4)C7—O1—C8—C10.7 (2)
C8—C1—C2—C70.3 (2)C7—O1—C8—C15179.28 (18)
S—C1—C2—C7175.27 (16)C3—C4—C9—C1037.8 (3)
C7—C2—C3—C41.3 (3)C5—C4—C9—C10140.3 (2)
C1—C2—C3—C4179.7 (2)C3—C4—C9—C14143.6 (2)
C2—C3—C4—C51.8 (3)C5—C4—C9—C1438.3 (3)
C2—C3—C4—C9179.89 (19)C14—C9—C10—C111.6 (3)
C3—C4—C5—C61.1 (3)C4—C9—C10—C11177.03 (19)
C9—C4—C5—C6179.2 (2)C9—C10—C11—C120.4 (3)
C4—C5—C6—C70.2 (3)C10—C11—C12—C131.9 (3)
C8—O1—C7—C6179.6 (2)C10—C11—C12—Br178.41 (16)
C8—O1—C7—C20.5 (2)C11—C12—C13—C141.3 (3)
C5—C6—C7—O1179.8 (2)Br—C12—C13—C14179.01 (16)
C5—C6—C7—C20.8 (3)C12—C13—C14—C90.8 (3)
C3—C2—C7—O1179.17 (17)C10—C9—C14—C132.2 (3)
C1—C2—C7—O10.1 (2)C4—C9—C14—C13176.4 (2)
C3—C2—C7—C60.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.663.416 (3)139
C15—H15B···O1ii0.962.663.380 (3)132
C16—H16A···O2i0.962.633.463 (3)145
C13—H13···Cg2iii0.932.863.624 (3)140
C16—H16B···Cg1iv0.962.903.768 (3)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H13BrO2S
Mr349.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.410 (1), 7.9508 (8), 15.728 (2)
β (°) 99.399 (1)
V3)1407.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.07
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.460, 0.579
No. of measured, independent and
observed [I > 2σ(I)] reflections
8551, 3195, 2551
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.04
No. of reflections3195
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.43

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.663.416 (3)138.6
C15—H15B···O1ii0.962.663.380 (3)131.7
C16—H16A···O2i0.962.633.463 (3)145.1
C13—H13···Cg2iii0.932.863.624 (3)140.0
C16—H16B···Cg1iv0.962.903.768 (3)151.6
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Lee, H. K., Son, B. W. & Lee, U. (2006b). Acta Cryst. E62, o4480–o4481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006a). Acta Cryst. E62, o4253–o4254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds