organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­methyl-5-[(3-nitro­anilino)methyl­ene]-1,3-dioxane-4,6-dione

aState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: lirui@scu.edu.cn

(Received 29 July 2009; accepted 10 August 2009; online 15 August 2009)

The benzene ring of the title compound, C13H12N2O6, is twisted away from the planes of the amino­methyl­ene unit and the dioxane ring by 30.13 (4) and 35.89 (4)°, respectively. The dioxane ring exhibits a half-boat conformation, in which the C atom between the dioxane O atoms is 0.553 (8) Å out-of-plane. An intra­molecular N—H⋯O hydrogen bond stabilizes the conformation of the dioxane ring with the amino­methyl­ene group [the dihedral angle between the mean planes of the dioxane ring and the amino­methyl­ene group is 11.61 (4)°]. In the crystal, a three-dimensional framework is built via weak inter­molecular N—H⋯O and C—H⋯O inter­actions.

Related literature

For the synthesis of related compounds, see: Cassis et al. (1985[Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125-133.]). For the synthesis of related anti­tumor precursors, see Ruchelman et al. (2003[Ruchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061-2073.]). For the crystal structures of related 5-aryl­amino­methyl­ene-2,2-dimethyl-1,3-dioxane-4,6-dione deriv­atives, see Li et al. (2009a[Li, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009a). Acta Cryst. E65, o1296.],b[Li, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009b). Acta Cryst. E65, o1297.]); Li, Shi et al. (2009[Li, R., Shi, J.-Y., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009). Acta Cryst. E65, o1298-o1299.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O6

  • Mr = 292.25

  • Monoclinic, P 21 /c

  • a = 11.7900 (13) Å

  • b = 8.7699 (9) Å

  • c = 14.0614 (15) Å

  • β = 113.8640 (10)°

  • V = 1329.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 153 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 8116 measured reflections

  • 3052 independent reflections

  • 2572 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.05

  • 3052 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.882 (16) 2.150 (15) 2.7705 (14) 126.8 (13)
N1—H1⋯O3i 0.882 (16) 2.308 (16) 3.1101 (14) 151.2 (13)
C7—H7⋯O4ii 0.93 2.58 3.4527 (18) 156
C11—H11⋯O4iii 0.93 2.39 3.242 (2) 152
C13—H13⋯O4ii 0.93 2.36 3.205 (2) 151
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+2; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 4(1H)quinolone structure have long attracted pharmacological interest as anticancer agents, anti-malarial agents and reversible (H+/K+) ATPase inhibitors (Ruchelman et al., 2003). 5-Arylaminomethylene-2,2-dimethyl-1,3-dioxane-4,6-diones are the key intermediates which can be used to synthesize the 4(1H)quinolone derivatives by thermolysis (Cassis et al., 1985).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the mean planes formed by the benzyl and aminomethylene units is 30.13 (4)°, while the angle between the mean planes of the dioxane ring and the aminomethylene group is only 11.61 (4)° due to the intramolecular N1—H1···O3 hydrogen bond (Table 1). Apart from that, the dioxane ring exhibits a half-boat conformation, in which the C atom between the dioxane oxygen atoms is 0.553 (8) Å out-of-plane.

The three-dimensional framework is built by the weak intermolecular N1—H1···O3i, C7—H7···O4ii, C13—H13···O4ii and C11—H11···O4iii interactions (Fig. 2).

Related literature top

For the synthesis of related compounds, see: Cassis et al. (1985). For the synthesis of related antitumor precursors, see Ruchelman et al. (2003). For the crystal structures of related 5-arylaminomethylene-2,2-dimethyl-1,3-dioxane-4,6-dione derivatives, see Li et al. (2009a,b); Li, Shi et al. (2009).

Experimental top

An ethanol solution (50 ml) of 2,2-dimethyl-1,3-dioxane-4,6-dione (1.44 g, 0.01 mol) and methylorthoformate (1.27 g, 0.012 mol) was heated to reflux for 1 h, then the 3-nitrobenzenamine (1.38 g, 0.01 mol) was added into the solution. The mixture was heated under reflux for another 8 h and then filtered. Single crystals were obtained from the filtrate after 3 days.

Refinement top

The imino H atom was located in a difference Fourier map and refined isotropically. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the intermolecular hydrogen bonds as dashed lines. [Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x, -y, -z + 2].
2,2-Dimethyl-5-[(3-nitroanilino)methylene]-1,3-dioxane-4,6-dione top
Crystal data top
C13H12N2O6F(000) = 608
Mr = 292.25Dx = 1.460 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7900 (13) ÅCell parameters from 4305 reflections
b = 8.7699 (9) Åθ = 2.3–27.6°
c = 14.0614 (15) ŵ = 0.12 mm1
β = 113.864 (1)°T = 153 K
V = 1329.6 (2) Å3Block, colourless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2572 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.014
Graphite monochromatorθmax = 27.6°, θmin = 2.8°
ϕ and ω scansh = 1514
8116 measured reflectionsk = 1110
3052 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.045P)2 + 0.3157P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3052 reflectionsΔρmax = 0.22 e Å3
197 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0195 (18)
Crystal data top
C13H12N2O6V = 1329.6 (2) Å3
Mr = 292.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7900 (13) ŵ = 0.12 mm1
b = 8.7699 (9) ÅT = 153 K
c = 14.0614 (15) Å0.20 × 0.10 × 0.10 mm
β = 113.864 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2572 reflections with I > 2σ(I)
8116 measured reflectionsRint = 0.014
3052 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
3052 reflectionsΔρmin = 0.18 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45433 (8)0.09916 (10)1.23372 (6)0.0370 (2)
O30.47419 (8)0.05487 (12)1.08661 (7)0.0440 (2)
O20.25826 (8)0.13984 (11)1.23681 (6)0.0401 (2)
C40.40464 (11)0.06725 (13)1.13054 (9)0.0322 (2)
N10.26298 (10)0.01843 (13)0.91248 (8)0.0359 (2)
C80.19585 (11)0.06369 (14)0.80763 (9)0.0342 (3)
C90.24224 (11)0.02544 (14)0.73506 (9)0.0347 (3)
H90.31480.03120.75380.042*
C30.37852 (11)0.07324 (14)1.29110 (9)0.0337 (3)
O40.08565 (9)0.12773 (15)1.09442 (8)0.0584 (3)
C70.21114 (11)0.01291 (14)0.97781 (9)0.0350 (3)
H70.12520.00550.95190.042*
O50.30012 (13)0.07262 (15)0.57581 (10)0.0684 (3)
C60.19637 (11)0.10611 (15)1.13438 (9)0.0381 (3)
C50.27159 (11)0.05534 (14)1.08029 (9)0.0333 (3)
C100.17796 (12)0.07365 (16)0.63388 (9)0.0403 (3)
C130.08587 (14)0.14495 (19)0.77793 (11)0.0510 (4)
H130.05450.17050.82680.061*
C20.43836 (14)0.16096 (17)1.39116 (10)0.0459 (3)
H2A0.38760.15391.42990.069*
H2B0.51880.11891.43150.069*
H2C0.44680.26601.37590.069*
N20.22862 (12)0.03454 (17)0.55739 (9)0.0535 (3)
C10.36712 (15)0.09463 (15)1.30692 (11)0.0481 (3)
H1A0.32850.14401.24060.072*
H1B0.44810.13721.34440.072*
H1C0.31740.10991.34590.072*
C110.06978 (15)0.1552 (2)0.60191 (11)0.0586 (4)
H110.02930.18740.53340.070*
O60.19778 (16)0.1124 (2)0.47934 (10)0.0992 (6)
C120.02320 (15)0.1877 (2)0.67512 (13)0.0672 (5)
H120.05180.23930.65500.081*
H10.3441 (15)0.0100 (18)0.9339 (12)0.051 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0341 (4)0.0496 (5)0.0266 (4)0.0047 (4)0.0115 (3)0.0028 (3)
O30.0338 (5)0.0665 (6)0.0354 (5)0.0021 (4)0.0177 (4)0.0058 (4)
O20.0413 (5)0.0500 (5)0.0306 (4)0.0094 (4)0.0164 (4)0.0009 (4)
C40.0350 (6)0.0351 (6)0.0270 (5)0.0005 (4)0.0130 (5)0.0007 (4)
N10.0313 (5)0.0478 (6)0.0274 (5)0.0026 (4)0.0106 (4)0.0029 (4)
C80.0332 (6)0.0396 (6)0.0279 (5)0.0008 (5)0.0105 (5)0.0033 (5)
C90.0328 (6)0.0388 (6)0.0302 (6)0.0001 (5)0.0106 (5)0.0030 (5)
C30.0375 (6)0.0384 (6)0.0263 (5)0.0019 (5)0.0140 (5)0.0011 (4)
O40.0353 (5)0.0966 (9)0.0440 (6)0.0133 (5)0.0167 (4)0.0000 (5)
C70.0312 (6)0.0427 (6)0.0295 (6)0.0006 (5)0.0108 (5)0.0006 (5)
O50.0855 (9)0.0756 (8)0.0587 (7)0.0112 (7)0.0443 (6)0.0031 (6)
C60.0352 (6)0.0482 (7)0.0324 (6)0.0042 (5)0.0152 (5)0.0021 (5)
C50.0315 (6)0.0409 (6)0.0283 (5)0.0007 (5)0.0128 (5)0.0004 (5)
C100.0420 (7)0.0496 (7)0.0294 (6)0.0030 (5)0.0146 (5)0.0032 (5)
C130.0479 (8)0.0687 (10)0.0417 (7)0.0176 (7)0.0235 (6)0.0123 (7)
C20.0555 (8)0.0499 (8)0.0300 (6)0.0003 (6)0.0147 (6)0.0052 (5)
N20.0583 (8)0.0716 (9)0.0339 (6)0.0037 (7)0.0218 (5)0.0014 (6)
C10.0629 (9)0.0392 (7)0.0427 (7)0.0011 (6)0.0219 (7)0.0044 (6)
C110.0521 (9)0.0833 (12)0.0349 (7)0.0148 (8)0.0118 (6)0.0209 (7)
O60.1211 (13)0.1419 (14)0.0516 (7)0.0380 (11)0.0524 (8)0.0415 (8)
C120.0509 (9)0.0965 (13)0.0529 (9)0.0351 (9)0.0197 (7)0.0271 (9)
Geometric parameters (Å, º) top
O1—C41.3560 (14)C7—H70.9300
O1—C31.4441 (14)O5—N21.2183 (18)
O3—C41.2147 (14)C6—C51.4524 (16)
O2—C61.3580 (15)C10—C111.370 (2)
O2—C31.4348 (15)C10—N21.4665 (17)
C4—C51.4401 (17)C13—C121.383 (2)
N1—C71.3219 (15)C13—H130.9300
N1—C81.4190 (15)C2—H2A0.9600
N1—H10.882 (16)C2—H2B0.9600
C8—C91.3800 (17)C2—H2C0.9600
C8—C131.3875 (18)N2—O61.2164 (17)
C9—C101.3802 (17)C1—H1A0.9600
C9—H90.9300C1—H1B0.9600
C3—C11.5030 (18)C1—H1C0.9600
C3—C21.5053 (17)C11—C121.378 (2)
O4—C61.2092 (16)C11—H110.9300
C7—C51.3754 (16)C12—H120.9300
C4—O1—C3117.92 (9)C4—C5—C6119.70 (10)
C6—O2—C3117.84 (9)C11—C10—C9123.24 (12)
O3—C4—O1118.31 (11)C11—C10—N2118.87 (12)
O3—C4—C5124.71 (11)C9—C10—N2117.88 (12)
O1—C4—C5116.96 (10)C12—C13—C8119.52 (13)
C7—N1—C8124.04 (10)C12—C13—H13120.2
C7—N1—H1119.2 (10)C8—C13—H13120.2
C8—N1—H1116.7 (10)C3—C2—H2A109.5
C9—C8—C13120.26 (11)C3—C2—H2B109.5
C9—C8—N1118.62 (11)H2A—C2—H2B109.5
C13—C8—N1121.12 (11)C3—C2—H2C109.5
C8—C9—C10118.11 (11)H2A—C2—H2C109.5
C8—C9—H9120.9H2B—C2—H2C109.5
C10—C9—H9120.9O6—N2—O5123.59 (14)
O2—C3—O1109.91 (9)O6—N2—C10117.94 (14)
O2—C3—C1110.44 (11)O5—N2—C10118.46 (12)
O1—C3—C1110.45 (10)C3—C1—H1A109.5
O2—C3—C2106.13 (10)C3—C1—H1B109.5
O1—C3—C2106.25 (10)H1A—C1—H1B109.5
C1—C3—C2113.48 (11)C3—C1—H1C109.5
N1—C7—C5126.51 (11)H1A—C1—H1C109.5
N1—C7—H7116.7H1B—C1—H1C109.5
C5—C7—H7116.7C10—C11—C12117.54 (13)
O4—C6—O2118.33 (11)C10—C11—H11121.2
O4—C6—C5125.30 (12)C12—C11—H11121.2
O2—C6—C5116.25 (10)C11—C12—C13121.26 (14)
C7—C5—C4122.25 (10)C11—C12—H12119.4
C7—C5—C6117.66 (11)C13—C12—H12119.4
C3—O1—C4—O3163.48 (11)O3—C4—C5—C6165.88 (12)
C3—O1—C4—C518.46 (15)O1—C4—C5—C612.04 (17)
C7—N1—C8—C9149.73 (12)O4—C6—C5—C77.2 (2)
C7—N1—C8—C1330.4 (2)O2—C6—C5—C7176.78 (11)
C13—C8—C9—C101.64 (19)O4—C6—C5—C4165.75 (14)
N1—C8—C9—C10178.26 (11)O2—C6—C5—C410.23 (18)
C6—O2—C3—O150.49 (14)C8—C9—C10—C111.1 (2)
C6—O2—C3—C171.61 (13)C8—C9—C10—N2179.15 (11)
C6—O2—C3—C2164.99 (10)C9—C8—C13—C120.1 (2)
C4—O1—C3—O248.46 (13)N1—C8—C13—C12179.74 (15)
C4—O1—C3—C173.64 (14)C11—C10—N2—O622.6 (2)
C4—O1—C3—C2162.88 (10)C9—C10—N2—O6157.58 (15)
C8—N1—C7—C5179.14 (12)C11—C10—N2—O5158.17 (16)
C3—O2—C6—O4161.51 (12)C9—C10—N2—O521.6 (2)
C3—O2—C6—C522.23 (16)C9—C10—C11—C121.0 (3)
N1—C7—C5—C41.6 (2)N2—C10—C11—C12178.78 (16)
N1—C7—C5—C6171.23 (12)C10—C11—C12—C132.5 (3)
O3—C4—C5—C76.8 (2)C8—C13—C12—C112.0 (3)
O1—C4—C5—C7175.30 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.882 (16)2.150 (15)2.7705 (14)126.8 (13)
N1—H1···O3i0.882 (16)2.308 (16)3.1101 (14)151.2 (13)
C7—H7···O40.932.482.8026 (18)101
C7—H7···O4ii0.932.583.4527 (18)156
C11—H11···O4iii0.932.393.242 (2)152
C13—H13···O4ii0.932.363.205 (2)151
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2; (iii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H12N2O6
Mr292.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)11.7900 (13), 8.7699 (9), 14.0614 (15)
β (°) 113.864 (1)
V3)1329.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8116, 3052, 2572
Rint0.014
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.05
No. of reflections3052
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.882 (16)2.150 (15)2.7705 (14)126.8 (13)
N1—H1···O3i0.882 (16)2.308 (16)3.1101 (14)151.2 (13)
C7—H7···O40.932.482.8026 (18)101
C7—H7···O4ii0.932.583.4527 (18)156
C11—H11···O4iii0.932.393.242 (2)152
C13—H13···O4ii0.932.363.205 (2)151
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+2; (iii) x, y+1/2, z+3/2.
 

Acknowledgements

This research was supported financially by the State Key Laboratory of Drug Research (Shanghai Institute of Materia Medica, Chinese Academy of Sciences).

References

First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009a). Acta Cryst. E65, o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009b). Acta Cryst. E65, o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, R., Shi, J.-Y., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009). Acta Cryst. E65, o1298–o1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRuchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061–2073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds