organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9,9-Di­methyl-12-(3-nitro­phen­yl)-7,8,9,10,11,12-hexa­hydro­benz[a]acridin-11-one

aLianyungang Teacher's College, Lianyungang 222006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: jiarunhong@126.com

(Received 20 August 2009; accepted 25 August 2009; online 29 August 2009)

The title compound, C25H22N2O3, was synthesized by the reaction of 3-nitro­benzaldehyde, dimedone and 2-naphthyl­amine in ethanol. In the mol­ecular structure, the cyclo­hexenone ring adopts an envelope conformation, whereas the piperidine ring has a boat conformation. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the biological and physical activity of compounds containing the acridine skeleton, see: Wysocka-Skrzela & Ledochowski (1976[Wysocka-Skrzela, B. & Ledochowski, A. (1976). Roccz. Chem. 50, 127-131.]); Matsumoto et al. (1983[Matsumoto, H., Arai, T., Takahashi, M., Ashizawa, T., Nakano, T. & Nagai, Y. (1983). Bull. Chem. Soc. Jpn, 56, 3009-3014.]); Popielarz et al. (1997[Popielarz, R., Hu, S. K. & Neckers, D. C. J. (1997). Photochem. Photobiol. A, 110, 79-83.]). Jia et al. (2007[Jia, R. H., Tu, S. J., Zhang, Y., Jiang, B., Zhang, J. Y., Yao, C. S. & Shi, F. (2007). J. Heterocycl. Chem. 44, 1177-1180.]); Kidwai & Rastogi (2005[Kidwai, M. & Rastogi, S. (2005). Heteroat. Chem. 16, 138-141.]); Srividya et al. (1996[Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083-5089.]). For microwave irradiation in organic synthesis, see: Tu et al. (2002[Tu, S. J., Lu, Z. S., Shi, D. Q., Yao, C. S., Gao, Y. & Guo, C. (2002). Synth. Commun. 32, 2181-2185.], 2004[Tu, S. J., Miao, C. B., Fang, F., Feng, Y. J., Li, T. J., Zhuang, Q. Y., Zhang, X. J., Zhu, S. L. & Shi, D. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1533-1536.]). For related structures, see: Jia et al. (2006[Jia, R.-H., Zhang, Q.-S., Tu, S.-J. & Zhang, Y. (2006). Acta Cryst. E62, o2032-o2033.]); Wang et al. (2006[Wang, X. S., Zhang, M. M., Zeng, Z. S., Shi, D. Q., Tu, S. J., Wei, X. Y. & Zong, Z. M. (2006). J. Heterocycl. Chem. 43, 989-996.]); Tu et al. (2006[Tu, S. J., Jia, R. H., Jiang, B., Zhang, Y. & Zhang, J. Y. (2006). J. Heterocycl. Chem. 43, 1621-1628.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22N2O3

  • Mr = 398.45

  • Monoclinic, P 21 /n

  • a = 10.264 (7) Å

  • b = 13.099 (9) Å

  • c = 15.018 (10) Å

  • β = 94.403 (10)°

  • V = 2013 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.17 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.991

  • 10293 measured reflections

  • 3541 independent reflections

  • 1401 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.185

  • S = 1.01

  • 3541 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.13 2.937 (4) 156
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A lot of natural and synthetic compounds containing the acridine skeleton display interesting biological and physical activities, such as antimalaria (Wysocka-Skrzela et al. 1976) and antitumor agents (Matsumoto et al. 1983), and multihydroacridineone derivatives have been reported to have high fluorescence efficiency and can be used as fluorescent molecular probes for monitoring of polymerization process (Popielarz et al. 1997). They are also increasingly receiving attention due to their likeness in properties with those of 1,4-dihydropyridines, which have similarities in structure to the biologically important compounds such as NADH and NADPH (Srividya et al. 1996). As a consequence, the interest of organic chemists in the synthesis or structure modifications of acridinedione derivatives remains high. Microwave irradiation is a very useful technique in organic synthesis (Tu et al. 2002). It is a simple, timesaving, high yielding, and environmentally friendly process. We have already reported the synthesis of heterocyclic compounds under microwave irradiation (Tu et al. 2004). M. Kidwai and S. Rastogi have reported the synthesis of polyhydroacridinones without additional fused benzene rings (Kidwai et al. 2005). The efficiency of microwave irradiation in promoting organic reaction and the success of its application in heterocyclic synthesis (Jia et al. 2007) has rapidly gained in popularity. Therefore design and synthesis of these compounds has been challenging. For these reasons, the synthesis of compounds containing cyanopyridine derivatives is strongly desired. In this paper we report the crystal structure of the title compound (I).

In the crystal structure, the dihedral angle between the C1/C6/C8/C17/N1 plane and the C20—C25 benzene ring is 83.5 (8)° (Fig. 1). The dihedral angle between the C1/C6/C8/C17/N1 plane and the C8/C9/C14/C15/C16/C17 plane is 5.8 (5)°. The dihedral angle between the C1/C6/C8/C17/N1 plane and the C1/C2/C4/C5/C6 plane is 11.4 (4)°, indicating that they are almost parallel. The distance between atom C3 and the mean plane C4/C5/C6/C1/C2 is 0.594 (6) Å, showing that the cyclohexenone ring adopts an envelope conformation. The newly formed piperidine ring has a boat conformation with the atoms N1 and C7 deviating from the plane C1/C6/C17/C8 by 0.098 (5) and 0.184 (6) Å, respectively, on the same direction. One chiral center exists in the title compound at C7. The centrosymmetric space group indicates the presence of equimolar enantiomers (S and R) in the crystal structure. The molecules are connected via N1—H1···O1 hydrogen bonds, forming infinite one-dimensional chains along the b axis (Fig. 2).

Related literature top

For the biological and physical activity of compounds containing the acridine skeleton, see: Wysocka-Skrzela & Ledochowski (1976); Matsumoto et al. (1983); Popielarz et al. (1997). Jia et al. (2007); Kidwai & Rastogi (2005); Srividya et al. (1996). For microwave irradiation is a very useful technique in organic synthesis, see: Tu et al. (2002, 2004). For related structures, see: Jia et al. (2006); Wang et al. (2006); Tu et al. (2006).

Experimental top

Compound (I) was prepared by the reaction of 3-nitrobenzaldehyde (1 mmol), dimedone (1 mmol), 2-naphthylamine (1 mmol), in ethanol (2 ml) under microwave irradiation without catalyst. Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a 95% aqueous ethanol solution (yield 92%; m.p. 567–569 K). IR (cm-1): 3260, 2928, 1582, 1522, 1494, 1385, 1234, 1155, 1093, 982, 923, 811, 729, 687, 654; 1H NMR (DMSO-d6): 0.82 (s, 3H, CH3), 1.06 (s, 3H, CH3), 2.04 (d, 1H, J = 16.0 Hz, CH), 2.25 (d, 1H, J = 16.0 Hz, CH), 2.43 (d, 1H, J = 16.4 Hz, CH), 2.58 (d, 1H, J = 16.4 Hz, CH), 5.97 (s, 1H, CH), 7.48–7.31 (m, 4H, ArH), 7.70 (d, 1H, J = 7.6 Hz, ArH),7.96–7.82 (m, 4H, ArH), 8.07 (s, 1H, ArH), 9.90 (s, 1H, NH).

Refinement top

All H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C,N) for others.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed along the a axis.
9,9-Dimethyl-12-(3-nitrophenyl)-7,8,9,10,11,12-hexahydrobenz[a]acridin- 11-one top
Crystal data top
C25H22N2O3F(000) = 840
Mr = 398.45Dx = 1.315 Mg m3
Monoclinic, P21/nMelting point = 567–569 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.264 (7) ÅCell parameters from 1084 reflections
b = 13.099 (9) Åθ = 2.5–22.0°
c = 15.018 (10) ŵ = 0.09 mm1
β = 94.403 (10)°T = 298 K
V = 2013 (2) Å3Block, colourless
Z = 40.17 × 0.16 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3541 independent reflections
Radiation source: fine-focus sealed tube1401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1211
Tmin = 0.985, Tmax = 0.991k = 1515
10293 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0662P)2]
where P = (Fo2 + 2Fc2)/3
3541 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C25H22N2O3V = 2013 (2) Å3
Mr = 398.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.264 (7) ŵ = 0.09 mm1
b = 13.099 (9) ÅT = 298 K
c = 15.018 (10) Å0.17 × 0.16 × 0.10 mm
β = 94.403 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3541 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1401 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.991Rint = 0.078
10293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
3541 reflectionsΔρmin = 0.19 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1648 (3)0.5920 (2)0.2710 (2)0.0467 (9)
H10.18780.52980.28180.056*
N20.1766 (5)0.6049 (4)0.0481 (3)0.0780 (14)
O10.2576 (3)0.9019 (2)0.1356 (2)0.0511 (8)
O20.1419 (4)0.5259 (4)0.0133 (3)0.1142 (16)
O30.2455 (6)0.6095 (4)0.1163 (3)0.154 (2)
C10.2442 (4)0.6520 (3)0.2254 (3)0.0382 (10)
C20.3791 (4)0.6138 (3)0.2166 (3)0.0473 (11)
H2A0.37510.54090.20500.057*
H2B0.43010.62380.27300.057*
C30.4497 (4)0.6650 (3)0.1429 (3)0.0455 (11)
C40.4294 (4)0.7796 (3)0.1489 (3)0.0517 (12)
H4A0.48390.80520.19970.062*
H4B0.45960.81090.09580.062*
C50.2909 (4)0.8141 (3)0.1584 (3)0.0433 (11)
C60.2012 (4)0.7453 (3)0.1960 (3)0.0353 (10)
C70.0640 (4)0.7834 (3)0.2070 (3)0.0372 (10)
H70.07080.85330.23010.045*
C80.0039 (4)0.7197 (3)0.2741 (3)0.0391 (10)
C90.1215 (4)0.7545 (3)0.3091 (3)0.0415 (11)
C100.1783 (4)0.8501 (3)0.2861 (3)0.0493 (12)
H100.13780.89310.24740.059*
C110.2924 (4)0.8803 (4)0.3201 (3)0.0644 (14)
H110.32730.94420.30570.077*
C120.3568 (5)0.8154 (5)0.3765 (4)0.0744 (16)
H120.43570.83530.39780.089*
C130.3039 (5)0.7236 (4)0.4000 (3)0.0653 (15)
H130.34640.68180.43870.078*
C140.1868 (4)0.6900 (4)0.3676 (3)0.0520 (12)
C150.1288 (5)0.5958 (4)0.3933 (3)0.0618 (14)
H150.16940.55440.43320.074*
C160.0156 (4)0.5643 (3)0.3615 (3)0.0529 (12)
H160.02070.50180.37920.063*
C170.0466 (4)0.6269 (3)0.3013 (3)0.0423 (11)
C180.5955 (4)0.6397 (3)0.1543 (4)0.0666 (15)
H18A0.63060.66170.21220.100*
H18B0.64000.67420.10910.100*
H18C0.60730.56740.14880.100*
C190.3959 (4)0.6251 (4)0.0517 (3)0.0666 (15)
H19A0.41120.55300.04840.100*
H19B0.43900.65910.00550.100*
H19C0.30370.63820.04380.100*
C200.0192 (4)0.7865 (3)0.1176 (3)0.0354 (10)
C210.0601 (4)0.6960 (3)0.0759 (3)0.0404 (11)
H210.03500.63340.10090.049*
C220.1379 (4)0.7000 (4)0.0025 (3)0.0520 (12)
C230.1796 (4)0.7900 (5)0.0420 (3)0.0643 (14)
H230.23440.79030.09420.077*
C240.1373 (5)0.8802 (4)0.0016 (3)0.0660 (15)
H240.16310.94250.02690.079*
C250.0565 (4)0.8776 (3)0.0769 (3)0.0508 (12)
H250.02670.93870.10270.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.054 (2)0.034 (2)0.053 (2)0.0032 (18)0.0093 (19)0.0036 (18)
N20.078 (3)0.089 (4)0.065 (3)0.042 (3)0.008 (3)0.005 (3)
O10.0500 (18)0.0375 (18)0.066 (2)0.0060 (15)0.0069 (15)0.0026 (16)
O20.118 (4)0.078 (3)0.141 (4)0.026 (3)0.029 (3)0.021 (3)
O30.222 (6)0.148 (4)0.079 (3)0.086 (4)0.072 (4)0.013 (3)
C10.036 (3)0.040 (3)0.038 (3)0.004 (2)0.001 (2)0.003 (2)
C20.045 (3)0.045 (3)0.051 (3)0.005 (2)0.001 (2)0.002 (2)
C30.033 (3)0.051 (3)0.052 (3)0.000 (2)0.004 (2)0.001 (2)
C40.034 (3)0.050 (3)0.072 (3)0.000 (2)0.009 (2)0.004 (3)
C50.043 (3)0.043 (3)0.043 (3)0.005 (2)0.001 (2)0.007 (2)
C60.031 (2)0.035 (2)0.040 (3)0.0017 (19)0.0066 (19)0.002 (2)
C70.036 (2)0.033 (2)0.042 (3)0.000 (2)0.005 (2)0.001 (2)
C80.038 (3)0.046 (3)0.034 (2)0.005 (2)0.002 (2)0.001 (2)
C90.038 (3)0.051 (3)0.036 (3)0.005 (2)0.003 (2)0.005 (2)
C100.045 (3)0.057 (3)0.046 (3)0.002 (2)0.008 (2)0.002 (2)
C110.048 (3)0.082 (4)0.064 (4)0.009 (3)0.009 (3)0.010 (3)
C120.044 (3)0.105 (5)0.076 (4)0.003 (3)0.018 (3)0.006 (4)
C130.053 (3)0.090 (4)0.055 (3)0.015 (3)0.017 (3)0.002 (3)
C140.040 (3)0.070 (4)0.047 (3)0.010 (3)0.009 (2)0.000 (3)
C150.068 (4)0.066 (4)0.053 (3)0.016 (3)0.016 (3)0.006 (3)
C160.062 (3)0.049 (3)0.048 (3)0.003 (2)0.009 (3)0.010 (2)
C170.047 (3)0.041 (3)0.040 (3)0.005 (2)0.006 (2)0.000 (2)
C180.041 (3)0.067 (3)0.092 (4)0.005 (2)0.005 (3)0.000 (3)
C190.069 (4)0.080 (4)0.051 (3)0.003 (3)0.010 (3)0.007 (3)
C200.029 (2)0.039 (3)0.038 (2)0.004 (2)0.0070 (19)0.005 (2)
C210.036 (3)0.045 (3)0.041 (3)0.003 (2)0.005 (2)0.007 (2)
C220.046 (3)0.072 (4)0.039 (3)0.011 (3)0.008 (2)0.001 (3)
C230.055 (3)0.097 (4)0.040 (3)0.000 (3)0.000 (2)0.021 (3)
C240.070 (4)0.074 (4)0.054 (3)0.024 (3)0.006 (3)0.020 (3)
C250.054 (3)0.044 (3)0.055 (3)0.002 (2)0.010 (2)0.001 (2)
Geometric parameters (Å, º) top
N1—C11.355 (5)C10—H100.9300
N1—C171.405 (5)C11—C121.401 (6)
N1—H10.8600C11—H110.9300
N2—O31.201 (5)C12—C131.355 (7)
N2—O21.201 (5)C12—H120.9300
N2—C221.462 (6)C13—C141.402 (6)
O1—C51.241 (5)C13—H130.9300
C1—C61.361 (5)C14—C151.411 (6)
C1—C21.489 (5)C15—C161.355 (6)
C2—C31.524 (5)C15—H150.9300
C2—H2A0.9700C16—C171.409 (5)
C2—H2B0.9700C16—H160.9300
C3—C41.520 (6)C18—H18A0.9600
C3—C181.529 (5)C18—H18B0.9600
C3—C191.529 (6)C18—H18C0.9600
C4—C51.508 (5)C19—H19A0.9600
C4—H4A0.9700C19—H19B0.9600
C4—H4B0.9700C19—H19C0.9600
C5—C61.435 (5)C20—C251.381 (5)
C6—C71.515 (5)C20—C211.391 (5)
C7—C81.518 (5)C21—C221.372 (6)
C7—C201.535 (5)C21—H210.9300
C7—H70.9800C22—C231.374 (6)
C8—C171.371 (5)C23—C241.382 (7)
C8—C91.428 (5)C23—H230.9300
C9—C101.413 (6)C24—C251.389 (6)
C9—C141.423 (6)C24—H240.9300
C10—C111.372 (6)C25—H250.9300
C1—N1—C17122.9 (3)C12—C11—H11119.8
C1—N1—H1118.6C13—C12—C11119.8 (5)
C17—N1—H1118.6C13—C12—H12120.1
O3—N2—O2123.3 (5)C11—C12—H12120.1
O3—N2—C22118.6 (6)C12—C13—C14121.6 (5)
O2—N2—C22118.0 (5)C12—C13—H13119.2
N1—C1—C6119.5 (4)C14—C13—H13119.2
N1—C1—C2116.7 (4)C13—C14—C15122.3 (5)
C6—C1—C2123.6 (4)C13—C14—C9119.0 (5)
C1—C2—C3114.4 (3)C15—C14—C9118.7 (4)
C1—C2—H2A108.6C16—C15—C14121.7 (4)
C3—C2—H2A108.6C16—C15—H15119.2
C1—C2—H2B108.6C14—C15—H15119.2
C3—C2—H2B108.6C15—C16—C17119.5 (4)
H2A—C2—H2B107.6C15—C16—H16120.3
C4—C3—C2108.4 (3)C17—C16—H16120.3
C4—C3—C18110.2 (3)C8—C17—N1120.5 (4)
C2—C3—C18109.8 (4)C8—C17—C16121.9 (4)
C4—C3—C19110.5 (4)N1—C17—C16117.6 (4)
C2—C3—C19109.9 (4)C3—C18—H18A109.5
C18—C3—C19108.0 (4)C3—C18—H18B109.5
C5—C4—C3115.9 (3)H18A—C18—H18B109.5
C5—C4—H4A108.3C3—C18—H18C109.5
C3—C4—H4A108.3H18A—C18—H18C109.5
C5—C4—H4B108.3H18B—C18—H18C109.5
C3—C4—H4B108.3C3—C19—H19A109.5
H4A—C4—H4B107.4C3—C19—H19B109.5
O1—C5—C6121.2 (4)H19A—C19—H19B109.5
O1—C5—C4119.6 (4)C3—C19—H19C109.5
C6—C5—C4119.2 (4)H19A—C19—H19C109.5
C1—C6—C5119.3 (4)H19B—C19—H19C109.5
C1—C6—C7122.7 (3)C25—C20—C21118.3 (4)
C5—C6—C7117.8 (4)C25—C20—C7121.8 (4)
C6—C7—C8111.7 (3)C21—C20—C7119.9 (4)
C6—C7—C20111.8 (3)C22—C21—C20119.3 (4)
C8—C7—C20110.0 (3)C22—C21—H21120.4
C6—C7—H7107.7C20—C21—H21120.4
C8—C7—H7107.7C21—C22—C23123.0 (5)
C20—C7—H7107.7C21—C22—N2119.2 (5)
C17—C8—C9119.0 (4)C23—C22—N2117.7 (5)
C17—C8—C7120.2 (4)C22—C23—C24117.9 (4)
C9—C8—C7120.8 (4)C22—C23—H23121.1
C10—C9—C14118.2 (4)C24—C23—H23121.1
C10—C9—C8122.5 (4)C23—C24—C25119.9 (5)
C14—C9—C8119.3 (4)C23—C24—H24120.0
C11—C10—C9120.8 (4)C25—C24—H24120.0
C11—C10—H10119.6C20—C25—C24121.6 (4)
C9—C10—H10119.6C20—C25—H25119.2
C10—C11—C12120.5 (5)C24—C25—H25119.2
C10—C11—H11119.8
C17—N1—C1—C69.7 (6)C11—C12—C13—C141.5 (8)
C17—N1—C1—C2165.8 (4)C12—C13—C14—C15178.3 (5)
N1—C1—C2—C3162.1 (3)C12—C13—C14—C90.5 (7)
C6—C1—C2—C322.5 (6)C10—C9—C14—C130.1 (6)
C1—C2—C3—C445.8 (5)C8—C9—C14—C13178.4 (4)
C1—C2—C3—C18166.2 (4)C10—C9—C14—C15178.0 (4)
C1—C2—C3—C1975.1 (5)C8—C9—C14—C153.8 (6)
C2—C3—C4—C547.4 (5)C13—C14—C15—C16180.0 (5)
C18—C3—C4—C5167.5 (4)C9—C14—C15—C162.3 (7)
C19—C3—C4—C573.1 (5)C14—C15—C16—C170.2 (7)
C3—C4—C5—O1157.1 (4)C9—C8—C17—N1177.4 (3)
C3—C4—C5—C624.7 (6)C7—C8—C17—N13.1 (6)
N1—C1—C6—C5171.8 (4)C9—C8—C17—C161.3 (6)
C2—C1—C6—C53.5 (6)C7—C8—C17—C16178.2 (4)
N1—C1—C6—C73.8 (6)C1—N1—C17—C810.1 (6)
C2—C1—C6—C7179.0 (4)C1—N1—C17—C16168.7 (4)
O1—C5—C6—C1175.7 (4)C15—C16—C17—C80.3 (7)
C4—C5—C6—C12.5 (6)C15—C16—C17—N1179.0 (4)
O1—C5—C6—C70.1 (6)C6—C7—C20—C25109.8 (4)
C4—C5—C6—C7178.2 (4)C8—C7—C20—C25125.4 (4)
C1—C6—C7—C815.0 (5)C6—C7—C20—C2170.8 (4)
C5—C6—C7—C8160.6 (3)C8—C7—C20—C2153.9 (5)
C1—C6—C7—C20108.8 (4)C25—C20—C21—C221.5 (6)
C5—C6—C7—C2075.6 (4)C7—C20—C21—C22177.9 (4)
C6—C7—C8—C1714.3 (5)C20—C21—C22—C230.9 (6)
C20—C7—C8—C17110.5 (4)C20—C21—C22—N2177.6 (4)
C6—C7—C8—C9166.3 (3)O3—N2—C22—C21179.4 (5)
C20—C7—C8—C968.9 (4)O2—N2—C22—C212.4 (7)
C17—C8—C9—C10178.5 (4)O3—N2—C22—C232.0 (7)
C7—C8—C9—C102.0 (6)O2—N2—C22—C23179.0 (5)
C17—C8—C9—C143.3 (6)C21—C22—C23—C242.0 (7)
C7—C8—C9—C14176.2 (4)N2—C22—C23—C24176.6 (4)
C14—C9—C10—C110.8 (6)C22—C23—C24—C250.6 (7)
C8—C9—C10—C11179.0 (4)C21—C20—C25—C242.8 (6)
C9—C10—C11—C121.8 (7)C7—C20—C25—C24176.6 (4)
C10—C11—C12—C132.2 (8)C23—C24—C25—C201.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.132.937 (4)156
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H22N2O3
Mr398.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.264 (7), 13.099 (9), 15.018 (10)
β (°) 94.403 (10)
V3)2013 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.17 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.985, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10293, 3541, 1401
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.185, 1.01
No. of reflections3541
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.132.937 (4)155.5
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the National Science Foundation of China (No. 20672090) and the Natural Science Foundation of Jiangsu Province (No. BK2006033) and the Graduate Foundation of Xuzhou Normal University (No. 08YLB031) for financial support.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJia, R. H., Tu, S. J., Zhang, Y., Jiang, B., Zhang, J. Y., Yao, C. S. & Shi, F. (2007). J. Heterocycl. Chem. 44, 1177–1180.  CrossRef CAS Google Scholar
First citationJia, R.-H., Zhang, Q.-S., Tu, S.-J. & Zhang, Y. (2006). Acta Cryst. E62, o2032–o2033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKidwai, M. & Rastogi, S. (2005). Heteroat. Chem. 16, 138–141.  Web of Science CrossRef CAS Google Scholar
First citationMatsumoto, H., Arai, T., Takahashi, M., Ashizawa, T., Nakano, T. & Nagai, Y. (1983). Bull. Chem. Soc. Jpn, 56, 3009–3014.  CrossRef CAS Web of Science Google Scholar
First citationPopielarz, R., Hu, S. K. & Neckers, D. C. J. (1997). Photochem. Photobiol. A, 110, 79–83.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083–5089.  CrossRef CAS Web of Science Google Scholar
First citationTu, S. J., Jia, R. H., Jiang, B., Zhang, Y. & Zhang, J. Y. (2006). J. Heterocycl. Chem. 43, 1621–1628.  CrossRef CAS Google Scholar
First citationTu, S. J., Lu, Z. S., Shi, D. Q., Yao, C. S., Gao, Y. & Guo, C. (2002). Synth. Commun. 32, 2181–2185.  Web of Science CSD CrossRef CAS Google Scholar
First citationTu, S. J., Miao, C. B., Fang, F., Feng, Y. J., Li, T. J., Zhuang, Q. Y., Zhang, X. J., Zhu, S. L. & Shi, D. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1533–1536.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X. S., Zhang, M. M., Zeng, Z. S., Shi, D. Q., Tu, S. J., Wei, X. Y. & Zong, Z. M. (2006). J. Heterocycl. Chem. 43, 989–996.  CrossRef CAS Google Scholar
First citationWysocka-Skrzela, B. & Ledochowski, A. (1976). Roccz. Chem. 50, 127–131.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds