organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(1-ethynylcyclo­hexyl)­pyro­mellitic di­imide

aDepartment of Chemistry, Mount Holyoke College, South Hadley, Masssachusetts 01075, USA, and bExilica Limited, The Technocentre, Puma Way, Coventry CV1 2TT, England
*Correspondence e-mail: hamilton@mtholyoke.edu

(Received 14 July 2009; accepted 4 August 2009; online 8 August 2009)

The title compound, C26H24N2O4, consists of a symmetrical mol­ecule that lies across a crystallographic inversion centre. The C—C distance in the triple bond is 1.188 (2) Å and there is also an inter­molecular C—H⋯O contact from a terminal acetyl­ene C—H to one of the dimiide O atoms [3.4349 (19) Å].

Related literature

For literature relating to the oxidative coupling of terminal acetyl­enes, see: Anderson, Anderson & Sanders (1995[Anderson, S., Anderson, H. L. & Sanders, J. K. M. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2255-2267.]); Anderson, Walter et al. (1995[Anderson, H. L., Walter, C. J., VidalFerran, A., Hay, R. A., Lowden, P. A. & Sanders, J. K. M. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2275-2279.]); Hamilton et al. (1998[Hamilton, D. G., Davies, J. E., Prodi, L. & Sanders, J. K. M. (1998). Chem. Eur. J. 4, 608-620.]); Raehm et al. (2002[Raehm, L., Hamilton, D. G. & Sanders, J. K. M. (2002). Synlett, pp. 1743-1761.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N2O4

  • Mr = 428.47

  • Monoclinic, P 21 /c

  • a = 13.1774 (3) Å

  • b = 7.1519 (1) Å

  • c = 11.8104 (3) Å

  • β = 112.495 (1)°

  • V = 1028.36 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.40 × 0.35 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, USA.]) Tmin = 0.963, Tmax = 0.982

  • 12939 measured reflections

  • 2022 independent reflections

  • 1898 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.158

  • S = 1.29

  • 2022 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H12⋯O2i 0.95 2.52 3.4349 (19) 161
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON97 (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The oxidative coupling of terminal acetylenes has proven to be a valuable architectural tool in the preparation of large macrocycles, especially when coupled to a templating mechanism to organize the premacrocycle components (Anderson, Anderson & Sanders, 1995). In this manner some remarkable structures have been assembled with admirable efficiency, given the entropic handicap imposed on the synthesis of large ring macrocycles (Anderson, Walter et al., 1995). One area in which a template greatly favors cyclization, and subsequently forms an integral part of the product structure, is in the synthesis of interlocked molecular compounds (catenanes and rotaxanes, Hamilton et al., 1998). Numerous systems have been reported that rely on the attractive interaction between π-electron deficient aromatic diimides and π-electron rich aromatic diethers to establish the desired templating effect (Raehm et al., 2002). In many of these instances the diimide component was equipped with terminal acetylenes, susbsequent oxidative coupling of which afforded the desired interlocked molecular systems. The title compound was prepared to address a key shortcoming of many acetylenic diimides of this type, namely their relatively low solubility in most organic solvents, in particular those in which the templating effects, so crucial to macrocycle synthesis, would be most effectively deployed. The presence of cyclohexyl substituents at the junctures of the diimide core with the acetylene substituents engendered high organic solvent solubility while retaining the key structural features required of the diimide unit. Reported here is the structure of the title compound (I), which is a symmetrical molecule that lies across a crystallographic inversion centre (Fig. 1), the asymmetric unit comprising half of the molecule. With such a simple molecule there are very few distinct features to report although it is worth mentioning that the C—C distance in the triple bond is 1.188 (2) Å. There is also an intermolecular C—H···O contact between the terminal acetylene C—H and one of the dimiide O atoms (Table 1).

Related literature top

For literature relating to the oxidative coupling of terminal acetylenes, see: Anderson, Anderson & Sanders (1995); Anderson, Walter et al. (1995); Hamilton et al. (1998); Raehm et al. (2002).

Experimental top

To a stirred solution of 1,2,4,5-benzenetetracarboxylic dianhydride (2.18 g, 10 mmol) in dry THF (20 mL) was added a solution of 1-ethynylcyclohexylamine (2.50 g, 2.74 ml, 20 mmol) in dry THF (10 ml). After 6 h the reaction was evaporated to give a white foam to which was added acetic anhydride (30 ml). After heating at 130° C for 2 h the reaction was cooled to room temperature and poured into vigorously stirred icecold water. The precipitated solids were collected at the pump, washed with cold water, and recrystallized from aqueous DMF to afford pale yellow crystals of the title compound (0.71 g, 17%): m.p. 219–220° C; 13C NMR (100 MHz, CDCl3) δ 166.5, 138.0, 119.0, 83.0, 75.0, 60.0, 36.0, 25.0, 23.0; 1H NMR (400 MHz, CDCl3) δ 8.21 (s, 2H), 2.65 (s, 2H), 2.56–2.45, 2.44–2.29, 1.90–1.60, 1.40–1.20 (4 x multiplet, 20H). Single crystals of suitable quality for structure determination were grown by vapor diffusion of water into a DMF solution of the title compound.

Refinement top

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with C—H distances of 0.95 (CH) and 0.99Å (CH2). The isotropic displacement parameters for all H atoms were set equal to 1.25Ueq of the carrier atom. The large maximum and minimum residual electron density peaks [0.60 eÅ-3, 1.45 Å from C13 and -0.80 eÅ-3, 1.30 Å from H1 respectively] are unexplained.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON97 (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry code (a): -x, -y + 1, -z + 1.
N,N'-Bis(1-ethynylcyclohexyl)pyromellitic diimide top
Crystal data top
C26H24N2O4F(000) = 452
Mr = 428.47Dx = 1.384 Mg m3
Monoclinic, P21/cMelting point = 492–493 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.1774 (3) ÅCell parameters from 2528 reflections
b = 7.1519 (1) Åθ = 2.9–27.5°
c = 11.8104 (3) ŵ = 0.09 mm1
β = 112.495 (1)°T = 120 K
V = 1028.36 (4) Å3Prism, colourless
Z = 20.40 × 0.35 × 0.20 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2022 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1898 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.033
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.3°
ϕ & ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 88
Tmin = 0.963, Tmax = 0.982l = 1314
12939 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.091P)2 + 0.2895P]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max = 0.001
2022 reflectionsΔρmax = 0.60 e Å3
146 parametersΔρmin = 0.80 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.38 (3)
Crystal data top
C26H24N2O4V = 1028.36 (4) Å3
Mr = 428.47Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.1774 (3) ŵ = 0.09 mm1
b = 7.1519 (1) ÅT = 120 K
c = 11.8104 (3) Å0.40 × 0.35 × 0.20 mm
β = 112.495 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2022 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1898 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.982Rint = 0.033
12939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.29Δρmax = 0.60 e Å3
2022 reflectionsΔρmin = 0.80 e Å3
146 parameters
Special details top

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.798007.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06501 (9)0.08401 (16)0.34794 (11)0.0222 (4)
O20.22629 (9)0.66713 (15)0.40367 (11)0.0202 (4)
N10.16857 (10)0.35785 (17)0.36123 (11)0.0156 (4)
C20.08812 (12)0.2440 (2)0.37881 (13)0.0158 (4)
C30.03482 (12)0.3636 (2)0.44392 (13)0.0151 (4)
C40.07781 (12)0.5432 (2)0.45479 (13)0.0152 (4)
C50.16567 (12)0.5404 (2)0.40426 (13)0.0158 (4)
C60.04412 (12)0.3126 (2)0.48923 (13)0.0162 (4)
H10.07260.18930.48250.020*
C70.25590 (11)0.3002 (2)0.31631 (13)0.0150 (4)
C80.36865 (12)0.3129 (2)0.42496 (14)0.0169 (4)
H20.38120.44310.45570.021*
H30.36800.23160.49250.021*
C90.46204 (12)0.2530 (2)0.38642 (15)0.0208 (4)
H40.46760.34240.32510.026*
H50.53230.25630.45860.026*
C100.44355 (13)0.0570 (2)0.33209 (16)0.0250 (4)
H60.44850.03450.39690.031*
H70.50200.02720.30170.031*
C110.33156 (13)0.0392 (2)0.22690 (15)0.0210 (4)
H80.32010.09200.19790.026*
H90.32980.11910.15780.026*
C120.23911 (12)0.0975 (2)0.26781 (13)0.0169 (4)
H100.23760.01200.33310.021*
H110.16770.08750.19770.021*
C130.25281 (12)0.4268 (2)0.21565 (14)0.0178 (4)
C140.25817 (13)0.5152 (2)0.13290 (15)0.0211 (4)
H120.26250.58580.06680.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0244 (6)0.0177 (6)0.0284 (7)0.0040 (4)0.0144 (5)0.0057 (5)
O20.0223 (6)0.0163 (6)0.0262 (6)0.0021 (4)0.0141 (5)0.0008 (4)
N10.0160 (6)0.0157 (7)0.0173 (7)0.0003 (5)0.0089 (5)0.0002 (5)
C20.0153 (7)0.0177 (8)0.0150 (7)0.0000 (5)0.0065 (6)0.0006 (6)
C30.0151 (7)0.0160 (8)0.0138 (7)0.0004 (5)0.0051 (6)0.0002 (5)
C40.0144 (7)0.0165 (8)0.0144 (7)0.0004 (5)0.0053 (6)0.0019 (5)
C50.0167 (7)0.0158 (8)0.0153 (8)0.0011 (5)0.0068 (6)0.0014 (5)
C60.0164 (7)0.0147 (7)0.0173 (8)0.0008 (5)0.0064 (6)0.0003 (6)
C70.0150 (7)0.0165 (8)0.0159 (7)0.0017 (5)0.0085 (6)0.0004 (6)
C80.0175 (8)0.0182 (8)0.0154 (8)0.0004 (5)0.0069 (6)0.0006 (6)
C90.0161 (8)0.0257 (9)0.0211 (8)0.0010 (6)0.0078 (6)0.0001 (6)
C100.0205 (8)0.0294 (9)0.0251 (9)0.0066 (6)0.0086 (7)0.0039 (7)
C110.0227 (8)0.0228 (9)0.0185 (8)0.0032 (6)0.0091 (6)0.0038 (6)
C120.0181 (8)0.0174 (8)0.0159 (8)0.0001 (6)0.0071 (6)0.0010 (6)
C130.0159 (7)0.0189 (8)0.0196 (8)0.0027 (5)0.0081 (6)0.0001 (6)
C140.0219 (8)0.0224 (8)0.0217 (8)0.0040 (6)0.0111 (6)0.0048 (7)
Geometric parameters (Å, º) top
O1—C21.2042 (19)C8—H20.99
O2—C51.2100 (18)C8—H30.99
N1—C51.4066 (19)C9—C101.522 (2)
N1—C21.4136 (19)C9—H40.99
N1—C71.4976 (18)C9—H50.99
C2—C31.493 (2)C10—C111.528 (2)
C3—C61.388 (2)C10—H60.99
C3—C41.389 (2)C10—H70.99
C4—C6i1.387 (2)C11—C121.530 (2)
C4—C51.492 (2)C11—H80.99
C6—C4i1.387 (2)C11—H90.99
C6—H10.95C12—H100.99
C7—C131.482 (2)C12—H110.99
C7—C121.543 (2)C13—C141.188 (2)
C7—C81.550 (2)C14—H120.95
C8—C91.528 (2)
C5—N1—C2110.85 (12)C7—C8—H3109.4
C5—N1—C7120.94 (12)H2—C8—H3108.0
C2—N1—C7127.92 (12)C10—C9—C8111.50 (13)
O1—C2—N1128.31 (14)C10—C9—H4109.3
O1—C2—C3125.88 (13)C8—C9—H4109.3
N1—C2—C3105.81 (12)C10—C9—H5109.3
C6—C3—C4123.13 (14)C8—C9—H5109.3
C6—C3—C2128.11 (14)H4—C9—H5108.0
C4—C3—C2108.76 (13)C9—C10—C11111.64 (13)
C3—C4—C6i122.54 (14)C9—C10—H6109.3
C3—C4—C5107.58 (13)C11—C10—H6109.3
C6i—C4—C5129.77 (14)C9—C10—H7109.3
O2—C5—N1125.73 (14)C11—C10—H7109.3
O2—C5—C4127.39 (14)H6—C10—H7108.0
N1—C5—C4106.83 (12)C10—C11—C12111.00 (12)
C3—C6—C4i114.32 (14)C10—C11—H8109.4
C3—C6—H1122.8C12—C11—H8109.4
C4i—C6—H1122.8C10—C11—H9109.4
C13—C7—N1109.08 (12)C12—C11—H9109.4
C13—C7—C12108.67 (12)H8—C11—H9108.0
N1—C7—C12111.69 (12)C11—C12—C7110.79 (12)
C13—C7—C8110.59 (12)C11—C12—H10109.5
N1—C7—C8108.28 (11)C7—C12—H10109.5
C12—C7—C8108.54 (12)C11—C12—H11109.5
C9—C8—C7111.30 (12)C7—C12—H11109.5
C9—C8—H2109.4H10—C12—H11108.1
C7—C8—H2109.4C14—C13—C7172.85 (16)
C9—C8—H3109.4C13—C14—H12180.0
C5—N1—C2—O1176.47 (15)C6i—C4—C5—N1178.17 (14)
C7—N1—C2—O19.7 (2)C4—C3—C6—C4i0.8 (2)
C5—N1—C2—C33.03 (16)C2—C3—C6—C4i179.81 (14)
C7—N1—C2—C3170.78 (13)C5—N1—C7—C1357.01 (17)
O1—C2—C3—C65.3 (3)C2—N1—C7—C13129.74 (15)
N1—C2—C3—C6175.23 (14)C5—N1—C7—C12177.14 (12)
O1—C2—C3—C4175.27 (14)C2—N1—C7—C129.6 (2)
N1—C2—C3—C44.25 (16)C5—N1—C7—C863.40 (17)
C6—C3—C4—C6i0.8 (3)C2—N1—C7—C8109.86 (16)
C2—C3—C4—C6i179.65 (13)C13—C7—C8—C961.41 (16)
C6—C3—C4—C5175.74 (13)N1—C7—C8—C9179.13 (12)
C2—C3—C4—C53.77 (16)C12—C7—C8—C957.70 (16)
C2—N1—C5—O2178.38 (14)C7—C8—C9—C1056.05 (17)
C7—N1—C5—O24.1 (2)C8—C9—C10—C1154.10 (18)
C2—N1—C5—C40.82 (16)C9—C10—C11—C1254.98 (18)
C7—N1—C5—C4173.49 (12)C10—C11—C12—C757.87 (17)
C3—C4—C5—O2175.58 (15)C13—C7—C12—C1161.74 (15)
C6i—C4—C5—O20.7 (3)N1—C7—C12—C11177.88 (11)
C3—C4—C5—N11.92 (16)C8—C7—C12—C1158.57 (15)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H12···O2ii0.952.523.4349 (19)161
Symmetry code: (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H24N2O4
Mr428.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)13.1774 (3), 7.1519 (1), 11.8104 (3)
β (°) 112.495 (1)
V3)1028.36 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.963, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12939, 2022, 1898
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.158, 1.29
No. of reflections2022
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.80

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON97 (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H12···O2i0.952.523.4349 (19)161.4
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

We thank the National Science Foundation (award No. 0314514), the Camille and Henry Dreyfus Foundation (Henry Dreyfus Teacher Scholar Award to DGH, 2005–2010), and the EPSRC National Crystallography Service (University of Southampton, England) for their support of this work.

References

First citationAnderson, S., Anderson, H. L. & Sanders, J. K. M. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2255–2267.  CrossRef Web of Science Google Scholar
First citationAnderson, H. L., Walter, C. J., VidalFerran, A., Hay, R. A., Lowden, P. A. & Sanders, J. K. M. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2275–2279.  CrossRef Web of Science Google Scholar
First citationHamilton, D. G., Davies, J. E., Prodi, L. & Sanders, J. K. M. (1998). Chem. Eur. J. 4, 608–620.  CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRaehm, L., Hamilton, D. G. & Sanders, J. K. M. (2002). Synlett, pp. 1743–1761.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds