organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(1-acetyl­cyclo­hexyl)-1,8:4,5-naphthalene­tetra­carboximide

aDepartment of Chemistry, Mount Holyoke College, South Hadley, Masssachusetts 01075, USA, and bExilica Limited, The Technocentre, Puma Way, Coventry CV1 2TT, UK
*Correspondence e-mail: hamilton@mtholyoke.edu

(Received 4 August 2009; accepted 13 August 2009; online 19 August 2009)

The title compound, C30H30N2O6, has crystallographic inversion symmetry with the nitro­gen atom and the two oxygen atoms of the naphthalene diimide system deviating by −0.243 (2), 0.109 (3) and 0.247 (2) Å, respectively, from the plane defined by the carbon atoms.

Related literature

For the structure of a related benzene diimide derivative with terminal acetyl­ene groups, see: Gondo et al. (2009[Gondo, C. A., Lynch, D. E. & Hamilton, D. G. (2009). Acta Cryst. E65, o2122.]). For preparative procedures for compounds of this type and for the title compound, see Hamilton et al. (1998[Hamilton, D. G., Davies, J. E., Prodi, L. & Sanders, J. K. M. (1998). Chem. Eur. J. 4, 608-620.], 1999[Hamilton, D. G., Prodi, L., Feeder, N. & Sanders, J. K. M. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1057-1065.]); Raehm et al. (2002[Raehm, L., Hamilton, D. G. & Sanders, J. K. M. (2002). Synlett. pp. 1743-1761.]); Ahn et al. (1997[Ahn, C., Campbell, R. F. & Feldman, K. S. (1997). Bull. Korean Chem. Soc. 18, 441-442.]).

[Scheme 1]

Experimental

Crystal data
  • C30H30N2O6

  • Mr = 514.56

  • Monoclinic, P 21 /c

  • a = 5.8553 (2) Å

  • b = 13.6603 (6) Å

  • c = 15.2820 (6) Å

  • β = 94.001 (2)°

  • V = 1219.35 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.20 × 0.18 × 0.06 mm

Data collection
  • Bruker–Nonius 95 mm CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, USA.]) Tmin = 0.981, Tmax = 0.994

  • 11932 measured reflections

  • 2397 independent reflections

  • 1949 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.150

  • S = 1.17

  • 2397 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a previous paper we presented the structure of a benzene diimide derivative having terminal acetylene groups and solubilizing cyclohexyl substituents (Gondo et al., 2009). This material was prepared for use in oxidative coupling reactions, thereby forming macrocycles as either isolated entities (Hamilton et al., 1999), or as components of molecularly interlocked systems (Hamilton et al., 1998; Raehm et al., 2002). As the corresponding naphthalene diimide analogues of benzene diimide derivatives are known to be generally more powerful electron acceptors, and have therefore been deployed in a variety of supramolecular and materials chemistry contexts, we attempted the preparation of the corresponding naphthalene diimide. However, under all of the standard conditions generally employed in the synthesis of benzene and naphthalene diimides we failed to obtain the desired compound. Only under rather forcing conditions was evidence of ring closure to the imide obtained, but under these conditions adventitious water was also found to have added to the acetylene groups (Ahn et al., 1997). Thus, a low yield of the diketone was the only isolable material obtained from this process and the structure of this compound (I) is reported here.

The title compound has crystallographic inversion symmetry (Fig. 1), (symmetry code: a -x + 1, -y + 1, -z + 1). The nitrogen and the two oxygen atoms of the naphthalene diimide systems deviate by -0.243 (2), 0.109 (3) and 0.247 (2) Å respectively from the plane defined by the carbon atoms.

Related literature top

For the structure of a related benzene diimide derivative with terminal acetylene groups, see: Gondo et al. (2009). For preparative procedures for compounds of this type and for the title compound, see Hamilton et al. (1998, 1999); Raehm et al. (2002); Ahn et al. (1997).

Experimental top

Under standard conditions for aromatic diimide formation (Hamilton et al., 1998; Hamilton et al., 1999) no evidence for the production of the desired acetylenic diimide could be found. Ring closure accompanied by unwanted addition of water across the acetylene bonds was observed using an alternative protocol (Ahn et al., 1997), giving a very low yield (<5%) of diketone (I) after chromatographic isolation. Single crystals of suitable quality for structure determination were grown by vapor diffusion of water into a DMF solution of the title compound.

Refinement top

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with C–H distances of 0.95 (ArH), 0.98 (CH3) and 0.99Å (CH2). The isotropic displacement parameters for all H atoms were set equal to 1.25Ueq of the carrier atom. A large residual electron density (0.60 eÅ-3) is located 0.57Å from H4.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom-numbering scheme for (I) which has inversion symetry (symmetry code: a -x + 1, -y + 1, -z + 1). Displacement ellipsoids are drawn at the 50% probability level.
N,N'-Bis(1-acetylcyclohexyl)-1,8:4,5-naphthalenetetracarboximide top
Crystal data top
C30H30N2O6F(000) = 544
Mr = 514.56Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2881 reflections
a = 5.8553 (2) Åθ = 2.9–27.5°
b = 13.6603 (6) ŵ = 0.10 mm1
c = 15.2820 (6) ÅT = 120 K
β = 94.001 (2)°Plate, orange
V = 1219.35 (8) Å30.20 × 0.18 × 0.06 mm
Z = 2
Data collection top
Bruker–Nonius 95 mm CCD camera on κ-goniostat
diffractometer
2397 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1949 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.1°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.981, Tmax = 0.994l = 1816
11932 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.2672P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
2397 reflectionsΔρmax = 0.60 e Å3
174 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.094 (8)
Crystal data top
C30H30N2O6V = 1219.35 (8) Å3
Mr = 514.56Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.8553 (2) ŵ = 0.10 mm1
b = 13.6603 (6) ÅT = 120 K
c = 15.2820 (6) Å0.20 × 0.18 × 0.06 mm
β = 94.001 (2)°
Data collection top
Bruker–Nonius 95 mm CCD camera on κ-goniostat
diffractometer
2397 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1949 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.994Rint = 0.049
11932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.17Δρmax = 0.60 e Å3
2397 reflectionsΔρmin = 0.59 e Å3
174 parameters
Special details top

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.770335.

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 3.5634 (0.0035) x - 0.8935 (0.0092) y + 11.4066 (0.0079) z = 7.0465 (0.0048) * -0.0167 (0.0010) C2 * 0.0088 (0.0016) C3 * -0.0098 (0.0013) C4 * -0.0071 (0.0012) C5 * 0.0161 (0.0011) C6 * 0.0087 (0.0011) C7 - 0.0027 (0.0028) C8 - 0.2429 (0.0022) N1 0.1089 (0.0026) O1 0.2471 (0.0023) O2 Rms deviation of fitted atoms = 0.0118

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9857 (2)0.37034 (9)0.34838 (9)0.0236 (4)
O20.4959 (2)0.19444 (9)0.49973 (9)0.0223 (4)
O31.0165 (2)0.19678 (10)0.23338 (9)0.0266 (4)
N10.6940 (3)0.28341 (11)0.40186 (10)0.0170 (4)
C20.8167 (3)0.37028 (13)0.39014 (12)0.0181 (4)
C30.7265 (3)0.46151 (13)0.42772 (11)0.0173 (4)
C40.5438 (3)0.45653 (13)0.48277 (11)0.0164 (4)
C50.4497 (3)0.36554 (13)0.50527 (12)0.0171 (4)
C60.5449 (3)0.27368 (13)0.47037 (12)0.0177 (4)
C70.8165 (3)0.55098 (13)0.40659 (12)0.0190 (4)
H10.94010.55400.36950.024*
C80.2735 (3)0.36217 (13)0.56043 (12)0.0190 (4)
H20.21250.30070.57630.024*
C90.7659 (3)0.19434 (13)0.35194 (12)0.0173 (4)
C100.8453 (3)0.22945 (13)0.26254 (12)0.0204 (5)
C110.6832 (4)0.29318 (15)0.20654 (13)0.0273 (5)
H30.76980.34510.17950.034*
H40.57070.32260.24320.034*
H50.60390.25330.16060.034*
C120.9518 (3)0.13813 (13)0.40723 (13)0.0210 (5)
H60.90150.13010.46730.026*
H71.09360.17780.41150.026*
C131.0070 (3)0.03672 (14)0.37068 (14)0.0245 (5)
H81.09460.04500.31800.031*
H91.10520.00070.41510.031*
C140.7927 (3)0.02394 (15)0.34620 (15)0.0278 (5)
H100.83650.08590.31820.035*
H110.71530.04040.39990.035*
C150.6295 (3)0.03341 (14)0.28330 (13)0.0234 (5)
H120.49280.00690.26680.029*
H130.70620.04890.22920.029*
C160.5565 (3)0.12816 (13)0.32632 (13)0.0202 (5)
H140.47630.11240.37950.025*
H150.44830.16400.28520.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (7)0.0232 (7)0.0269 (8)0.0025 (5)0.0105 (6)0.0044 (6)
O20.0292 (8)0.0171 (7)0.0213 (7)0.0026 (6)0.0057 (6)0.0012 (5)
O30.0294 (8)0.0235 (7)0.0284 (8)0.0017 (6)0.0124 (6)0.0047 (6)
N10.0176 (8)0.0171 (8)0.0166 (8)0.0003 (6)0.0036 (6)0.0009 (6)
C20.0186 (9)0.0210 (10)0.0146 (9)0.0016 (7)0.0007 (7)0.0005 (7)
C30.0182 (9)0.0209 (10)0.0125 (9)0.0015 (7)0.0003 (7)0.0020 (7)
C40.0149 (9)0.0206 (10)0.0132 (9)0.0001 (7)0.0016 (7)0.0001 (7)
C50.0184 (9)0.0185 (10)0.0140 (9)0.0003 (7)0.0013 (7)0.0001 (7)
C60.0178 (9)0.0204 (10)0.0147 (9)0.0015 (8)0.0003 (7)0.0010 (7)
C70.0197 (9)0.0223 (10)0.0153 (9)0.0015 (8)0.0042 (7)0.0004 (7)
C80.0218 (10)0.0194 (9)0.0160 (10)0.0039 (8)0.0024 (7)0.0016 (7)
C90.0163 (9)0.0167 (9)0.0192 (10)0.0011 (7)0.0032 (7)0.0016 (7)
C100.0240 (10)0.0152 (9)0.0223 (10)0.0024 (8)0.0032 (8)0.0051 (7)
C110.0334 (12)0.0279 (11)0.0202 (10)0.0019 (9)0.0006 (9)0.0019 (8)
C120.0189 (10)0.0208 (10)0.0232 (10)0.0003 (8)0.0007 (8)0.0005 (8)
C130.0209 (10)0.0213 (10)0.0312 (11)0.0041 (8)0.0017 (8)0.0028 (8)
C140.0257 (11)0.0188 (10)0.0397 (12)0.0005 (8)0.0074 (9)0.0013 (9)
C150.0212 (10)0.0214 (10)0.0280 (11)0.0043 (8)0.0042 (8)0.0057 (8)
C160.0174 (9)0.0210 (10)0.0221 (10)0.0008 (8)0.0013 (7)0.0020 (8)
Geometric parameters (Å, º) top
O1—C21.214 (2)C9—C161.552 (3)
O2—C61.214 (2)C10—C111.509 (3)
O3—C101.210 (2)C11—H30.98
N1—C21.405 (2)C11—H40.98
N1—C61.415 (2)C11—H50.98
N1—C91.512 (2)C12—C131.537 (3)
C2—C31.485 (3)C12—H60.99
C3—C71.378 (3)C12—H70.99
C3—C41.408 (3)C13—C141.528 (3)
C4—C4i1.410 (3)C13—H80.99
C4—C51.412 (3)C13—H90.99
C5—C81.378 (3)C14—C151.524 (3)
C5—C61.487 (3)C14—H100.99
C7—C8i1.406 (3)C14—H110.99
C7—H10.95C15—C161.526 (3)
C8—C7i1.406 (3)C15—H120.99
C8—H20.95C15—H130.99
C9—C121.536 (3)C16—H140.99
C9—C101.550 (3)C16—H150.99
C2—N1—C6121.39 (15)H3—C11—H4109.5
C2—N1—C9116.90 (14)C10—C11—H5109.5
C6—N1—C9120.37 (14)H3—C11—H5109.5
O1—C2—N1120.69 (16)H4—C11—H5109.5
O1—C2—C3121.85 (16)C9—C12—C13114.19 (16)
N1—C2—C3117.42 (16)C9—C12—H6108.7
C7—C3—C4120.12 (16)C13—C12—H6108.7
C7—C3—C2120.09 (16)C9—C12—H7108.7
C4—C3—C2119.76 (16)C13—C12—H7108.7
C3—C4—C4i119.6 (2)H6—C12—H7107.6
C3—C4—C5120.91 (16)C14—C13—C12112.81 (16)
C4i—C4—C5119.5 (2)C14—C13—H8109.0
C8—C5—C4120.00 (16)C12—C13—H8109.0
C8—C5—C6120.44 (16)C14—C13—H9109.0
C4—C5—C6119.55 (16)C12—C13—H9109.0
O2—C6—N1122.08 (16)H8—C13—H9107.8
O2—C6—C5121.05 (16)C15—C14—C13110.10 (16)
N1—C6—C5116.87 (15)C15—C14—H10109.6
C3—C7—C8i120.33 (17)C13—C14—H10109.6
C3—C7—H1119.8C15—C14—H11109.6
C8i—C7—H1119.8C13—C14—H11109.6
C5—C8—C7i120.45 (17)H10—C14—H11108.2
C5—C8—H2119.8C14—C15—C16110.27 (16)
C7i—C8—H2119.8C14—C15—H12109.6
N1—C9—C12109.66 (14)C16—C15—H12109.6
N1—C9—C10107.88 (14)C14—C15—H13109.6
C12—C9—C10113.28 (15)C16—C15—H13109.6
N1—C9—C16110.69 (14)H12—C15—H13108.1
C12—C9—C16111.39 (15)C15—C16—C9111.25 (15)
C10—C9—C16103.78 (15)C15—C16—H14109.4
O3—C10—C11120.53 (17)C9—C16—H14109.4
O3—C10—C9121.16 (17)C15—C16—H15109.4
C11—C10—C9117.60 (16)C9—C16—H15109.4
C10—C11—H3109.5H14—C16—H15108.0
C10—C11—H4109.5
C6—N1—C2—O1160.09 (17)C2—C3—C7—C8i177.80 (17)
C9—N1—C2—O16.8 (2)C4—C5—C8—C7i1.1 (3)
C6—N1—C2—C322.2 (2)C6—C5—C8—C7i179.98 (17)
C9—N1—C2—C3170.95 (15)C2—N1—C9—C1289.38 (18)
O1—C2—C3—C78.2 (3)C6—N1—C9—C1277.62 (19)
N1—C2—C3—C7169.49 (17)C2—N1—C9—C1034.4 (2)
O1—C2—C3—C4173.83 (17)C6—N1—C9—C10158.59 (15)
N1—C2—C3—C48.5 (2)C2—N1—C9—C16147.33 (16)
C7—C3—C4—C4i1.0 (3)C6—N1—C9—C1645.7 (2)
C2—C3—C4—C4i179.01 (19)N1—C9—C10—O3136.51 (17)
C7—C3—C4—C5179.86 (17)C12—C9—C10—O314.9 (2)
C2—C3—C4—C52.2 (3)C16—C9—C10—O3106.01 (19)
C3—C4—C5—C8178.90 (16)N1—C9—C10—C1153.1 (2)
C4i—C4—C5—C80.1 (3)C12—C9—C10—C11174.65 (15)
C3—C4—C5—C60.0 (3)C16—C9—C10—C1164.39 (19)
C4i—C4—C5—C6178.82 (19)N1—C9—C12—C13169.46 (15)
C2—N1—C6—O2155.80 (17)C10—C9—C12—C1370.0 (2)
C9—N1—C6—O210.6 (3)C16—C9—C12—C1346.6 (2)
C2—N1—C6—C524.2 (2)C9—C12—C13—C1448.2 (2)
C9—N1—C6—C5169.37 (15)C12—C13—C14—C1554.2 (2)
C8—C5—C6—O211.5 (3)C13—C14—C15—C1660.5 (2)
C4—C5—C6—O2167.34 (17)C14—C15—C16—C960.2 (2)
C8—C5—C6—N1168.43 (16)N1—C9—C16—C15174.79 (15)
C4—C5—C6—N112.7 (2)C12—C9—C16—C1552.5 (2)
C4—C3—C7—C8i0.2 (3)C10—C9—C16—C1569.71 (18)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H30N2O6
Mr514.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)5.8553 (2), 13.6603 (6), 15.2820 (6)
β (°) 94.001 (2)
V3)1219.35 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.06
Data collection
DiffractometerBruker–Nonius 95 mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.981, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
11932, 2397, 1949
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.150, 1.17
No. of reflections2397
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.59

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

We thank the National Science Foundation (Award 0314514), the Camille and Henry Dreyfus Foundation (Henry Dreyfus Teacher Scholar Award to DGH, 2005–2010), and the EPSRC National Crystallography Service (University of Southampton, UK) for their support of this work.

References

First citationAhn, C., Campbell, R. F. & Feldman, K. S. (1997). Bull. Korean Chem. Soc. 18, 441–442.  CAS Google Scholar
First citationGondo, C. A., Lynch, D. E. & Hamilton, D. G. (2009). Acta Cryst. E65, o2122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamilton, D. G., Davies, J. E., Prodi, L. & Sanders, J. K. M. (1998). Chem. Eur. J. 4, 608–620.  CrossRef CAS Google Scholar
First citationHamilton, D. G., Prodi, L., Feeder, N. & Sanders, J. K. M. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1057–1065.  Web of Science CrossRef Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRaehm, L., Hamilton, D. G. & Sanders, J. K. M. (2002). Synlett. pp. 1743–1761.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds