organic compounds
2-Bromo-1-(4-methoxyphenyl)ethanone
aDepartment of Light Chemical Engineering, College of Food Science and Light Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn
The title compound, C9H9BrO2, prepared by the reaction of 4-methoxyacetophenone and cupric bromide, , is approximately planar (r.m.s. deviation 0.0008 Å). In the crystal, weak intermolecular aromatic C—H⋯Ocarbonyl hydrogen-bonding interactions result in a one-dimensional chain structure.
Related literature
For background to hydrazone compounds, see: Domiano et al. (1984); Li et al. (1988); Sadik et al. (2004). For background to thiazole compounds, see: Shinagawa et al. (1997); Shivarama et al.(2003); Dinçer et al. (2005); Zhang et al. (2009). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809033303/zs2006sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809033303/zs2006Isup2.hkl
4-Methoxyacetophenone (1.50 g, 0.01 mol) was dissolved in 50 ml ethyl acetate, cupric bromide (3.36 g, 0.015 mol) was added and the mixture was refluxed for ca. 3 h. On cooling, the solid which separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate. 1H NMR (CDCl3, δ, p.p.m.) 8.17 (d, 2 H), 7.49 (d, 2 H), 4.5 (s, 2 H), 3.81 (s,3 H).
All H atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene and aromatic H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H9BrO2 | F(000) = 456 |
Mr = 229.06 | Dx = 1.690 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 27 reflections |
a = 7.7360 (15) Å | θ = 1–25° |
b = 12.441 (3) Å | µ = 4.52 mm−1 |
c = 10.048 (2) Å | T = 305 K |
β = 111.42 (3)° | Block, colorless |
V = 900.3 (4) Å3 | 0.20 × 0.10 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 924 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 25.3°, θmin = 2.7° |
ω/2θ scans | h = −9→8 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→14 |
Tmin = 0.465, Tmax = 0.661 | l = 0→12 |
1634 measured reflections | 3 standard reflections every 200 reflections |
1634 independent reflections | intensity decay: 9% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.048P)2] where P = (Fo2 + 2Fc2)/3 |
1634 reflections | (Δ/σ)max = 0.001 |
109 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
C9H9BrO2 | V = 900.3 (4) Å3 |
Mr = 229.06 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7360 (15) Å | µ = 4.52 mm−1 |
b = 12.441 (3) Å | T = 305 K |
c = 10.048 (2) Å | 0.20 × 0.10 × 0.10 mm |
β = 111.42 (3)° |
Enraf–Nonius CAD-4 diffractometer | 924 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.465, Tmax = 0.661 | 3 standard reflections every 200 reflections |
1634 measured reflections | intensity decay: 9% |
1634 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.35 e Å−3 |
1634 reflections | Δρmin = −0.53 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.20597 (10) | 0.66539 (6) | 0.07859 (7) | 0.0717 (3) | |
O1 | 0.3621 (7) | 0.8754 (4) | 0.2083 (5) | 0.0848 (15) | |
C1 | 0.1809 (8) | 0.8016 (5) | −0.0164 (6) | 0.0576 (17) | |
H1A | 0.2308 | 0.7957 | −0.0918 | 0.069* | |
H1B | 0.0500 | 0.8190 | −0.0608 | 0.069* | |
O2 | 0.2187 (6) | 1.3075 (4) | −0.1487 (5) | 0.0689 (13) | |
C2 | 0.2781 (8) | 0.8917 (5) | 0.0820 (6) | 0.0534 (16) | |
C3 | 0.2657 (7) | 0.9994 (5) | 0.0181 (6) | 0.0478 (14) | |
C4 | 0.1597 (8) | 1.0221 (5) | −0.1242 (6) | 0.0593 (17) | |
H4A | 0.0957 | 0.9671 | −0.1849 | 0.071* | |
C5 | 0.1493 (9) | 1.1250 (5) | −0.1751 (7) | 0.0633 (18) | |
H5A | 0.0780 | 1.1390 | −0.2703 | 0.076* | |
C6 | 0.2432 (8) | 1.2086 (5) | −0.0870 (7) | 0.0538 (16) | |
C7 | 0.3497 (8) | 1.1859 (5) | 0.0560 (7) | 0.0600 (17) | |
H7A | 0.4138 | 1.2406 | 0.1172 | 0.072* | |
C8 | 0.3586 (8) | 1.0831 (5) | 0.1051 (6) | 0.0564 (16) | |
H8A | 0.4297 | 1.0688 | 0.2003 | 0.068* | |
C9 | 0.2906 (10) | 1.3980 (6) | −0.0610 (8) | 0.083 (2) | |
H9A | 0.2625 | 1.4618 | −0.1186 | 0.124* | |
H9B | 0.4227 | 1.3908 | −0.0151 | 0.124* | |
H9C | 0.2353 | 1.4028 | 0.0102 | 0.124* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0721 (5) | 0.0588 (5) | 0.0722 (5) | 0.0064 (4) | 0.0121 (3) | 0.0076 (4) |
O1 | 0.104 (4) | 0.067 (3) | 0.050 (3) | 0.002 (3) | −0.011 (3) | 0.003 (2) |
C1 | 0.054 (4) | 0.060 (4) | 0.050 (3) | 0.002 (3) | 0.008 (3) | −0.003 (3) |
O2 | 0.079 (3) | 0.054 (3) | 0.070 (3) | −0.007 (2) | 0.021 (2) | −0.002 (2) |
C2 | 0.042 (3) | 0.060 (4) | 0.049 (4) | 0.007 (3) | 0.006 (3) | −0.005 (3) |
C3 | 0.036 (3) | 0.050 (4) | 0.053 (4) | −0.001 (3) | 0.011 (3) | −0.003 (3) |
C4 | 0.060 (4) | 0.056 (4) | 0.049 (3) | −0.002 (3) | 0.005 (3) | −0.012 (3) |
C5 | 0.067 (4) | 0.059 (4) | 0.052 (4) | 0.005 (4) | 0.007 (3) | 0.000 (3) |
C6 | 0.047 (4) | 0.056 (4) | 0.058 (4) | −0.004 (3) | 0.018 (3) | −0.007 (3) |
C7 | 0.054 (4) | 0.062 (5) | 0.058 (4) | −0.011 (3) | 0.013 (3) | −0.010 (3) |
C8 | 0.044 (4) | 0.064 (4) | 0.049 (3) | −0.004 (3) | 0.001 (3) | −0.005 (3) |
C9 | 0.087 (5) | 0.063 (5) | 0.096 (5) | −0.012 (4) | 0.031 (4) | −0.004 (4) |
Br—C1 | 1.920 (6) | C4—H4A | 0.9300 |
O1—C2 | 1.213 (6) | C5—C6 | 1.387 (8) |
C1—C2 | 1.502 (8) | C5—H5A | 0.9300 |
C1—H1A | 0.9700 | C6—C7 | 1.400 (8) |
C1—H1B | 0.9700 | C7—C8 | 1.363 (8) |
O2—C6 | 1.359 (7) | C7—H7A | 0.9300 |
O2—C9 | 1.412 (8) | C8—H8A | 0.9300 |
C2—C3 | 1.474 (8) | C9—H9A | 0.9600 |
C3—C8 | 1.380 (7) | C9—H9B | 0.9600 |
C3—C4 | 1.393 (8) | C9—H9C | 0.9600 |
C4—C5 | 1.370 (8) | ||
C2—C1—Br | 113.3 (4) | C4—C5—H5A | 119.4 |
C2—C1—H1A | 108.9 | C6—C5—H5A | 119.4 |
Br—C1—H1A | 108.9 | O2—C6—C5 | 115.8 (5) |
C2—C1—H1B | 108.9 | O2—C6—C7 | 125.6 (6) |
Br—C1—H1B | 108.9 | C5—C6—C7 | 118.6 (6) |
H1A—C1—H1B | 107.7 | C8—C7—C6 | 119.6 (6) |
C6—O2—C9 | 118.7 (5) | C8—C7—H7A | 120.2 |
O1—C2—C3 | 122.1 (6) | C6—C7—H7A | 120.2 |
O1—C2—C1 | 120.8 (6) | C7—C8—C3 | 122.2 (6) |
C3—C2—C1 | 117.0 (5) | C7—C8—H8A | 118.9 |
C8—C3—C4 | 118.2 (6) | C3—C8—H8A | 118.9 |
C8—C3—C2 | 118.3 (5) | O2—C9—H9A | 109.5 |
C4—C3—C2 | 123.4 (6) | O2—C9—H9B | 109.5 |
C5—C4—C3 | 120.3 (6) | H9A—C9—H9B | 109.5 |
C5—C4—H4A | 119.9 | O2—C9—H9C | 109.5 |
C3—C4—H4A | 119.9 | H9A—C9—H9C | 109.5 |
C4—C5—C6 | 121.2 (6) | H9B—C9—H9C | 109.5 |
Br—C1—C2—O1 | 0.0 (8) | C9—O2—C6—C5 | 172.0 (6) |
Br—C1—C2—C3 | −179.8 (4) | C9—O2—C6—C7 | −6.3 (9) |
O1—C2—C3—C8 | 2.2 (9) | C4—C5—C6—O2 | −178.5 (6) |
C1—C2—C3—C8 | −178.0 (5) | C4—C5—C6—C7 | 0.0 (9) |
O1—C2—C3—C4 | −175.3 (6) | O2—C6—C7—C8 | 178.3 (6) |
C1—C2—C3—C4 | 4.5 (9) | C5—C6—C7—C8 | 0.0 (9) |
C8—C3—C4—C5 | 0.1 (9) | C6—C7—C8—C3 | 0.0 (9) |
C2—C3—C4—C5 | 177.6 (6) | C4—C3—C8—C7 | −0.1 (9) |
C3—C4—C5—C6 | 0.0 (10) | C2—C3—C8—C7 | −177.8 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1 | 0.93 | 2.47 | 2.780 (8) | 100 |
C7—H7A···O1i | 0.93 | 2.58 | 3.505 (7) | 171 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H9BrO2 |
Mr | 229.06 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 305 |
a, b, c (Å) | 7.7360 (15), 12.441 (3), 10.048 (2) |
β (°) | 111.42 (3) |
V (Å3) | 900.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.52 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.465, 0.661 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1634, 1634, 924 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.116, 1.01 |
No. of reflections | 1634 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.53 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1 | 0.93 | 2.47 | 2.780 (8) | 99.6 |
C7—H7A···O1i | 0.93 | 2.58 | 3.505 (7) | 171.1 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Dinçer, M., Özdemir, N., Çukurovalı, A. & Yılmaz, İ. (2005). Acta Cryst. E61, o1712-o1714. Web of Science CSD CrossRef IUCr Journals Google Scholar
Domiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281–286. CSD CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Li, X. R., Sun, Z. M. & Chang, J. C. (1988). Synth. React. Inorg. Met. Org. Chem. 18, 657–665. CrossRef CAS Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sadık, G., Necmi, D., Ibrahim, Y., Alaaddin, Ç. & Dinçer, M. (2004). Acta Cryst. E60, o889-o891. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shinagawa, H., Yamaga, H., Houchigai, H., Sumita, Y. & Sunagawa, M. (1997). Bioorg. Med. Chem. 5, 601–621. CrossRef CAS PubMed Web of Science Google Scholar
Shivarama, H. B., Malini, K. V., Sooryanarayana, R. B., Sarojini, B. K. & Suchetha, K. N. (2003). Eur. J. Med. Chem. 38, 313–318. Web of Science PubMed Google Scholar
Zhang, J., Wu, L., Zhuang, L. & Wang, G. (2009). Acta Cryst. E65, o884. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of hydrazones, owing to their coordinating capability, pharmacological activity, antibacterial and antifungal properties, and their use in analytical chemistry as highly selective extractants, has been intensively investigated (Domiano et al., 1984; Li et al., 1988; Sadık et al., 2004). In addition, many thiazole compounds are of considerable importance because of their antibacterial and anti-inflammatory activity (Shinagawa et al., 1997; Shivarama et al., 2003; Dinçer et al., 2005). We have focused our synthetic and structural studies on new derivatives of thiazole-substituted hydrazones (Zhang et al., 2009). We report here the crystal structure of a bromo-substituted methoxyacetophenone, the title compound C9H9BrO2 (I), which is a very important intermediate for the synthesis of thiazole-substituted hydrazones.
In (I), all bond lengths are within normal ranges (Allen et al., 1987). The presence of a strong intramolecular aromatic C8–H···O1carbonyl hydrogen bond (Table 1) forms a pseudo five-membered ring [O1/C2/C3/C8/H8A with an r.m.s. deviation 0.0069 Å], maintaining essential coplanarity of the ketone side chain with the benzene ring (Fig. 1) [torsion angle: C1–C2–C3–C8, -178.0 (5)°]. The methoxy group is similarly essentially coplanar [torsion angle: C5–C6–O2–C9, 172.0 (6)°].
The molecules of (I) associate through weak intermolecular aromatic C—H···Ocarbonyl hydrogen bonds forming one-dimensional chains which extend along the b axial direction in the unit cell (Fig.2).