organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-1-(4-meth­oxy­phen­yl)ethanone

aDepartment of Light Chemical Engineering, College of Food Science and Light Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn

(Received 13 August 2009; accepted 21 August 2009; online 26 August 2009)

The title compound, C9H9BrO2, prepared by the reaction of 4-methoxy­acetophenone and cupric bromide, , is approximately planar (r.m.s. deviation 0.0008 Å). In the crystal, weak inter­molecular aromatic C—H⋯Ocarbon­yl hydrogen-bonding inter­actions result in a one-dimensional chain structure.

Related literature

For background to hydrazone compounds, see: Domiano et al. (1984[Domiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281-286.]); Li et al. (1988[Li, X. R., Sun, Z. M. & Chang, J. C. (1988). Synth. React. Inorg. Met. Org. Chem. 18, 657-665.]); Sadik et al. (2004[Sadık, G., Necmi, D., Ibrahim, Y., Alaaddin, Ç. & Dinçer, M. (2004). Acta Cryst. E60, o889-o891.]). For background to thia­zole compounds, see: Shinagawa et al. (1997[Shinagawa, H., Yamaga, H., Houchigai, H., Sumita, Y. & Sunagawa, M. (1997). Bioorg. Med. Chem. 5, 601-621.]); Shivarama et al.(2003[Shivarama, H. B., Malini, K. V., Sooryanarayana, R. B., Sarojini, B. K. & Suchetha, K. N. (2003). Eur. J. Med. Chem. 38, 313-318.]); Dinçer et al. (2005[Dinçer, M., Özdemir, N., Çukurovalı, A. & Yılmaz, İ. (2005). Acta Cryst. E61, o1712-o1714.]); Zhang et al. (2009[Zhang, J., Wu, L., Zhuang, L. & Wang, G. (2009). Acta Cryst. E65, o884.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9BrO2

  • Mr = 229.06

  • Monoclinic, P 21 /c

  • a = 7.7360 (15) Å

  • b = 12.441 (3) Å

  • c = 10.048 (2) Å

  • β = 111.42 (3)°

  • V = 900.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.52 mm−1

  • T = 305 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.465, Tmax = 0.661

  • 1634 measured reflections

  • 1634 independent reflections

  • 924 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.116

  • S = 1.01

  • 1634 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1i 0.93 2.58 3.505 (7) 171
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of hydrazones, owing to their coordinating capability, pharmacological activity, antibacterial and antifungal properties, and their use in analytical chemistry as highly selective extractants, has been intensively investigated (Domiano et al., 1984; Li et al., 1988; Sadık et al., 2004). In addition, many thiazole compounds are of considerable importance because of their antibacterial and anti-inflammatory activity (Shinagawa et al., 1997; Shivarama et al., 2003; Dinçer et al., 2005). We have focused our synthetic and structural studies on new derivatives of thiazole-substituted hydrazones (Zhang et al., 2009). We report here the crystal structure of a bromo-substituted methoxyacetophenone, the title compound C9H9BrO2 (I), which is a very important intermediate for the synthesis of thiazole-substituted hydrazones.

In (I), all bond lengths are within normal ranges (Allen et al., 1987). The presence of a strong intramolecular aromatic C8–H···O1carbonyl hydrogen bond (Table 1) forms a pseudo five-membered ring [O1/C2/C3/C8/H8A with an r.m.s. deviation 0.0069 Å], maintaining essential coplanarity of the ketone side chain with the benzene ring (Fig. 1) [torsion angle: C1–C2–C3–C8, -178.0 (5)°]. The methoxy group is similarly essentially coplanar [torsion angle: C5–C6–O2–C9, 172.0 (6)°].

The molecules of (I) associate through weak intermolecular aromatic C—H···Ocarbonyl hydrogen bonds forming one-dimensional chains which extend along the b axial direction in the unit cell (Fig.2).

Related literature top

For background to hydrazone compounds, see: Domiano et al. (1984); Li et al. (1988); Sadik et al. (2004). For background to thiazole compounds, see: Shinagawa et al. (1997); Shivarama et al.(2003); Dinçer et al. (2005); Zhang et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Methoxyacetophenone (1.50 g, 0.01 mol) was dissolved in 50 ml ethyl acetate, cupric bromide (3.36 g, 0.015 mol) was added and the mixture was refluxed for ca. 3 h. On cooling, the solid which separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate. 1H NMR (CDCl3, δ, p.p.m.) 8.17 (d, 2 H), 7.49 (d, 2 H), 4.5 (s, 2 H), 3.81 (s,3 H).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene and aromatic H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme with non-H atoms drawn as 30% displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) showing hydrogen bonds as dashed lines.
2-Bromo-1-(4-methoxyphenyl)ethanone top
Crystal data top
C9H9BrO2F(000) = 456
Mr = 229.06Dx = 1.690 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 7.7360 (15) Åθ = 1–25°
b = 12.441 (3) ŵ = 4.52 mm1
c = 10.048 (2) ÅT = 305 K
β = 111.42 (3)°Block, colorless
V = 900.3 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
924 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 2.7°
ω/2θ scansh = 98
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.465, Tmax = 0.661l = 012
1634 measured reflections3 standard reflections every 200 reflections
1634 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
1634 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C9H9BrO2V = 900.3 (4) Å3
Mr = 229.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7360 (15) ŵ = 4.52 mm1
b = 12.441 (3) ÅT = 305 K
c = 10.048 (2) Å0.20 × 0.10 × 0.10 mm
β = 111.42 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
924 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.465, Tmax = 0.6613 standard reflections every 200 reflections
1634 measured reflections intensity decay: 9%
1634 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
1634 reflectionsΔρmin = 0.53 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.20597 (10)0.66539 (6)0.07859 (7)0.0717 (3)
O10.3621 (7)0.8754 (4)0.2083 (5)0.0848 (15)
C10.1809 (8)0.8016 (5)0.0164 (6)0.0576 (17)
H1A0.23080.79570.09180.069*
H1B0.05000.81900.06080.069*
O20.2187 (6)1.3075 (4)0.1487 (5)0.0689 (13)
C20.2781 (8)0.8917 (5)0.0820 (6)0.0534 (16)
C30.2657 (7)0.9994 (5)0.0181 (6)0.0478 (14)
C40.1597 (8)1.0221 (5)0.1242 (6)0.0593 (17)
H4A0.09570.96710.18490.071*
C50.1493 (9)1.1250 (5)0.1751 (7)0.0633 (18)
H5A0.07801.13900.27030.076*
C60.2432 (8)1.2086 (5)0.0870 (7)0.0538 (16)
C70.3497 (8)1.1859 (5)0.0560 (7)0.0600 (17)
H7A0.41381.24060.11720.072*
C80.3586 (8)1.0831 (5)0.1051 (6)0.0564 (16)
H8A0.42971.06880.20030.068*
C90.2906 (10)1.3980 (6)0.0610 (8)0.083 (2)
H9A0.26251.46180.11860.124*
H9B0.42271.39080.01510.124*
H9C0.23531.40280.01020.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0721 (5)0.0588 (5)0.0722 (5)0.0064 (4)0.0121 (3)0.0076 (4)
O10.104 (4)0.067 (3)0.050 (3)0.002 (3)0.011 (3)0.003 (2)
C10.054 (4)0.060 (4)0.050 (3)0.002 (3)0.008 (3)0.003 (3)
O20.079 (3)0.054 (3)0.070 (3)0.007 (2)0.021 (2)0.002 (2)
C20.042 (3)0.060 (4)0.049 (4)0.007 (3)0.006 (3)0.005 (3)
C30.036 (3)0.050 (4)0.053 (4)0.001 (3)0.011 (3)0.003 (3)
C40.060 (4)0.056 (4)0.049 (3)0.002 (3)0.005 (3)0.012 (3)
C50.067 (4)0.059 (4)0.052 (4)0.005 (4)0.007 (3)0.000 (3)
C60.047 (4)0.056 (4)0.058 (4)0.004 (3)0.018 (3)0.007 (3)
C70.054 (4)0.062 (5)0.058 (4)0.011 (3)0.013 (3)0.010 (3)
C80.044 (4)0.064 (4)0.049 (3)0.004 (3)0.001 (3)0.005 (3)
C90.087 (5)0.063 (5)0.096 (5)0.012 (4)0.031 (4)0.004 (4)
Geometric parameters (Å, º) top
Br—C11.920 (6)C4—H4A0.9300
O1—C21.213 (6)C5—C61.387 (8)
C1—C21.502 (8)C5—H5A0.9300
C1—H1A0.9700C6—C71.400 (8)
C1—H1B0.9700C7—C81.363 (8)
O2—C61.359 (7)C7—H7A0.9300
O2—C91.412 (8)C8—H8A0.9300
C2—C31.474 (8)C9—H9A0.9600
C3—C81.380 (7)C9—H9B0.9600
C3—C41.393 (8)C9—H9C0.9600
C4—C51.370 (8)
C2—C1—Br113.3 (4)C4—C5—H5A119.4
C2—C1—H1A108.9C6—C5—H5A119.4
Br—C1—H1A108.9O2—C6—C5115.8 (5)
C2—C1—H1B108.9O2—C6—C7125.6 (6)
Br—C1—H1B108.9C5—C6—C7118.6 (6)
H1A—C1—H1B107.7C8—C7—C6119.6 (6)
C6—O2—C9118.7 (5)C8—C7—H7A120.2
O1—C2—C3122.1 (6)C6—C7—H7A120.2
O1—C2—C1120.8 (6)C7—C8—C3122.2 (6)
C3—C2—C1117.0 (5)C7—C8—H8A118.9
C8—C3—C4118.2 (6)C3—C8—H8A118.9
C8—C3—C2118.3 (5)O2—C9—H9A109.5
C4—C3—C2123.4 (6)O2—C9—H9B109.5
C5—C4—C3120.3 (6)H9A—C9—H9B109.5
C5—C4—H4A119.9O2—C9—H9C109.5
C3—C4—H4A119.9H9A—C9—H9C109.5
C4—C5—C6121.2 (6)H9B—C9—H9C109.5
Br—C1—C2—O10.0 (8)C9—O2—C6—C5172.0 (6)
Br—C1—C2—C3179.8 (4)C9—O2—C6—C76.3 (9)
O1—C2—C3—C82.2 (9)C4—C5—C6—O2178.5 (6)
C1—C2—C3—C8178.0 (5)C4—C5—C6—C70.0 (9)
O1—C2—C3—C4175.3 (6)O2—C6—C7—C8178.3 (6)
C1—C2—C3—C44.5 (9)C5—C6—C7—C80.0 (9)
C8—C3—C4—C50.1 (9)C6—C7—C8—C30.0 (9)
C2—C3—C4—C5177.6 (6)C4—C3—C8—C70.1 (9)
C3—C4—C5—C60.0 (10)C2—C3—C8—C7177.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10.932.472.780 (8)100
C7—H7A···O1i0.932.583.505 (7)171
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9BrO2
Mr229.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)305
a, b, c (Å)7.7360 (15), 12.441 (3), 10.048 (2)
β (°) 111.42 (3)
V3)900.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.52
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.465, 0.661
No. of measured, independent and
observed [I > 2σ(I)] reflections
1634, 1634, 924
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.116, 1.01
No. of reflections1634
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.53

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10.932.472.780 (8)99.6
C7—H7A···O1i0.932.583.505 (7)171.1
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDinçer, M., Özdemir, N., Çukurovalı, A. & Yılmaz, İ. (2005). Acta Cryst. E61, o1712-o1714.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDomiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281–286.  CSD CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, X. R., Sun, Z. M. & Chang, J. C. (1988). Synth. React. Inorg. Met. Org. Chem. 18, 657–665.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSadık, G., Necmi, D., Ibrahim, Y., Alaaddin, Ç. & Dinçer, M. (2004). Acta Cryst. E60, o889-o891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinagawa, H., Yamaga, H., Houchigai, H., Sumita, Y. & Sunagawa, M. (1997). Bioorg. Med. Chem. 5, 601–621.  CrossRef CAS PubMed Web of Science Google Scholar
First citationShivarama, H. B., Malini, K. V., Sooryanarayana, R. B., Sarojini, B. K. & Suchetha, K. N. (2003). Eur. J. Med. Chem. 38, 313–318.  Web of Science PubMed Google Scholar
First citationZhang, J., Wu, L., Zhuang, L. & Wang, G. (2009). Acta Cryst. E65, o884.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds