organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Carb­oxy­phen­yl)sulfan­yl]acetic acid

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.edu.cn

(Received 9 August 2009; accepted 26 August 2009; online 5 September 2009)

The title compound, C9H8O4S, affords a zigzig chain in the crystal structure by inter­molecular O—H⋯O hydrogen bonds. The molecular geometry suggests that extensive but not uniform π-electron delocalization is present in the benzene ring and extends over the exocyclic C—S and C—C bonds.

Related literature

For background to the coordination chemistry of rigid carboxyl­ate system, see: Sagatys et al. (2003[Sagatys, D. S., Smith, G., Bott, R. C. & Healy, P. C. (2003). Aust. J. Chem. 56, 941-943.]); Sokolov et al. (2001[Sokolov, M., Fyodorova, N., Pervukhina, N. & Fedorov, V. (2001). Inorg. Chem. Commun. 4, 261-263.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8O4S

  • Mr = 212.22

  • Triclinic, [P \overline 1]

  • a = 5.1786 (5) Å

  • b = 9.2973 (9) Å

  • c = 10.4776 (11) Å

  • α = 69.980 (4)°

  • β = 81.959 (6)°

  • γ = 79.732 (6)°

  • V = 464.69 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.33 × 0.24 × 0.15 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.910, Tmax = 0.952

  • 6609 measured reflections

  • 2110 independent reflections

  • 1941 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.222

  • S = 1.19

  • 2110 reflections

  • 133 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.86 (7) 1.92 (5) 2.687 (6) 149 (8)
O3—H3⋯O4ii 0.85 (2) 1.80 (5) 2.634 (4) 167 (6)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thioacetatebenzoic acid (I) is an interesting ligand from a structural point of view since it can display a wide range of coordination patterns with metal ions. The ligand (I) belongs to dicarboxylic acids. The characteristic coordination chemistry of the rigid carboxylate system may facilitate the formation of inorganic-organic materials with high thermal stability and form large channels, while the peculiar coordination chemistry of the flexible carboxylate system employed in the self-assembly reaction has versatile coordination behavior and may be favorable for the formation of the helical structure (Sagatys et al., 2003; Sokolov et al., 2001). As shown in Fig.1, the bond lengths within the benzene ring exhibit the expected pattern with C—C bonds (1.368 (8)–1.399 (6) Å) between the single and double bonds. And the bond distance of C1—C7 (1.476 (5) Å) and S1—C6 (1.768 (4) Å) also fall between the double and single bonds. All these interatomic distances suggest that extensive but not uniform π electron delocalization is present in the benzene ring and extends over the exocyclic C—S and C—C bonds. The torsion angle of C6—S1—C8—C9 is -71.7 (4)°. O—H···O hydrogen bonds link independent molecules to form a zigzig chain.

Related literature top

For background to the coordination chemistry of rigid carboxylate system, see: Sagatys et al. (2003); Sokolov et al. (2001).

Experimental top

To an aqueous solution of 2-thiobenzoic acid (1.54 g, 10.0 mmol) and NaOH (0.80 g, 20.0 mmol) were sequentially added the aqueous solution of chloroactic acid (2.835 g, 30.0 mmol) and NaOH (1.400 g, 35.0 mmol). After stirring for 4 h at 353 K under nitrogen atmosphere, the mixture was cooled to room temperature slowly. Adjusted the pH to 2 by adding 1.0 mol/L HCl, the pink deposit appeared rapidly. The solids were filtered and washed with water. The single crystals suitable for X-ray diffraction were obtained by the recrystallization of sieved solid in the ethanol.

Refinement top

The H atoms bonded to C atoms were positioned geometrically [aromatic C—H = 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids
2-[(2-Carboxyphenyl)sulfanyl]acetic acid top
Crystal data top
C9H8O4SZ = 2
Mr = 212.22F(000) = 220
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1786 (5) ÅCell parameters from 5343 reflections
b = 9.2973 (9) Åθ = 2.1–27.7°
c = 10.4776 (11) ŵ = 0.33 mm1
α = 69.980 (4)°T = 296 K
β = 81.959 (6)°Block, colourless
γ = 79.732 (6)°0.33 × 0.24 × 0.15 mm
V = 464.69 (8) Å3
Data collection top
Bruker APEXII
diffractometer
2110 independent reflections
Radiation source: fine-focus sealed tube1941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.910, Tmax = 0.952k = 1211
6609 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0736P)2 + 1.2589P]
where P = (Fo2 + 2Fc2)/3
2110 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.65 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
C9H8O4Sγ = 79.732 (6)°
Mr = 212.22V = 464.69 (8) Å3
Triclinic, P1Z = 2
a = 5.1786 (5) ÅMo Kα radiation
b = 9.2973 (9) ŵ = 0.33 mm1
c = 10.4776 (11) ÅT = 296 K
α = 69.980 (4)°0.33 × 0.24 × 0.15 mm
β = 81.959 (6)°
Data collection top
Bruker APEXII
diffractometer
2110 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1941 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.952Rint = 0.024
6609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0742 restraints
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.65 e Å3
2110 reflectionsΔρmin = 0.34 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2028 (2)0.36823 (12)0.11601 (11)0.0417 (3)
O10.0678 (11)0.4660 (9)0.3612 (6)0.116 (2)
O20.2828 (9)0.5474 (7)0.3870 (5)0.0891 (16)
H20.173 (12)0.569 (10)0.449 (6)0.107*
O30.2508 (7)0.1074 (4)0.1122 (4)0.0549 (9)
H30.127 (8)0.107 (7)0.067 (5)0.066*
O40.0891 (7)0.1410 (4)0.0369 (3)0.0506 (8)
C10.4065 (8)0.0579 (5)0.2004 (4)0.0383 (9)
C20.5712 (9)0.0691 (6)0.2747 (5)0.0482 (10)
H2A0.56670.16590.26820.058*
C30.7421 (10)0.0540 (7)0.3583 (5)0.0571 (12)
H3A0.85110.13980.40810.068*
C40.7485 (10)0.0890 (7)0.3665 (5)0.0571 (13)
H4A0.86380.10000.42210.068*
C50.5879 (9)0.2166 (6)0.2942 (5)0.0465 (10)
H5A0.59590.31240.30180.056*
C60.4120 (8)0.2051 (5)0.2093 (4)0.0365 (8)
C70.2342 (8)0.0364 (5)0.1093 (4)0.0402 (9)
C80.2613 (11)0.5208 (5)0.1742 (5)0.0488 (11)
H8A0.44980.52090.16870.059*
H8B0.18640.61920.11300.059*
C90.1482 (10)0.5076 (6)0.3179 (5)0.0504 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0549 (7)0.0366 (5)0.0400 (6)0.0082 (4)0.0092 (4)0.0178 (4)
O10.093 (3)0.210 (7)0.109 (4)0.084 (4)0.041 (3)0.121 (5)
O20.076 (3)0.149 (5)0.077 (3)0.034 (3)0.002 (2)0.075 (3)
O30.064 (2)0.0412 (17)0.073 (2)0.0014 (15)0.0322 (18)0.0301 (16)
O40.063 (2)0.0398 (16)0.060 (2)0.0022 (14)0.0285 (16)0.0241 (15)
C10.040 (2)0.043 (2)0.038 (2)0.0067 (17)0.0030 (16)0.0202 (17)
C20.052 (3)0.046 (2)0.050 (3)0.004 (2)0.012 (2)0.020 (2)
C30.056 (3)0.062 (3)0.055 (3)0.000 (2)0.021 (2)0.020 (2)
C40.046 (3)0.077 (3)0.060 (3)0.005 (2)0.020 (2)0.033 (3)
C50.042 (2)0.058 (3)0.054 (3)0.012 (2)0.0053 (19)0.033 (2)
C60.0368 (19)0.044 (2)0.0344 (19)0.0082 (16)0.0008 (15)0.0194 (16)
C70.043 (2)0.041 (2)0.045 (2)0.0066 (17)0.0047 (17)0.0241 (18)
C80.067 (3)0.038 (2)0.050 (2)0.016 (2)0.008 (2)0.0189 (19)
C90.058 (3)0.047 (2)0.060 (3)0.010 (2)0.009 (2)0.032 (2)
Geometric parameters (Å, º) top
S1—C61.768 (4)C2—C31.385 (6)
S1—C81.809 (4)C2—H2A0.9300
O1—C91.224 (7)C3—C41.368 (8)
O2—C91.251 (6)C3—H3A0.9300
O2—H20.86 (7)C4—C51.372 (7)
O3—C71.315 (5)C4—H4A0.9300
O3—H30.85 (2)C5—C61.399 (6)
O4—C71.216 (5)C5—H5A0.9300
C1—C21.388 (6)C8—C91.509 (7)
C1—C61.409 (6)C8—H8A0.9700
C1—C71.476 (5)C8—H8B0.9700
C6—S1—C8103.4 (2)C6—C5—H5A119.4
C9—O2—H2105 (6)C5—C6—C1117.6 (4)
C7—O3—H3105 (4)C5—C6—S1121.8 (3)
C2—C1—C6120.0 (4)C1—C6—S1120.6 (3)
C2—C1—C7118.8 (4)O4—C7—O3122.1 (4)
C6—C1—C7121.2 (4)O4—C7—C1123.9 (4)
C3—C2—C1121.0 (4)O3—C7—C1114.1 (4)
C3—C2—H2A119.5C9—C8—S1114.5 (3)
C1—C2—H2A119.5C9—C8—H8A108.6
C4—C3—C2119.1 (5)S1—C8—H8A108.6
C4—C3—H3A120.5C9—C8—H8B108.6
C2—C3—H3A120.5S1—C8—H8B108.6
C3—C4—C5121.1 (4)H8A—C8—H8B107.6
C3—C4—H4A119.4O1—C9—O2122.5 (5)
C5—C4—H4A119.4O1—C9—C8121.3 (4)
C4—C5—C6121.2 (4)O2—C9—C8116.1 (5)
C4—C5—H5A119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.86 (7)1.92 (5)2.687 (6)149 (8)
O3—H3···O4ii0.85 (2)1.80 (5)2.634 (4)167 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC9H8O4S
Mr212.22
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.1786 (5), 9.2973 (9), 10.4776 (11)
α, β, γ (°)69.980 (4), 81.959 (6), 79.732 (6)
V3)464.69 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.33 × 0.24 × 0.15
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.910, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
6609, 2110, 1941
Rint0.024
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.222, 1.19
No. of reflections2110
No. of parameters133
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.34

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.86 (7)1.92 (5)2.687 (6)149 (8)
O3—H3···O4ii0.85 (2)1.80 (5)2.634 (4)167 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.
 

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSagatys, D. S., Smith, G., Bott, R. C. & Healy, P. C. (2003). Aust. J. Chem. 56, 941–943.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokolov, M., Fyodorova, N., Pervukhina, N. & Fedorov, V. (2001). Inorg. Chem. Commun. 4, 261–263.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds