organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo-2-methyl­phen­yl)pivalamide

aMedical College of Henan University, Henan University, Kaifeng 475004, People's Republic of China, and bDepartment of Pharmacy, Zhengzhou Railway Vocational and Technological College, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: qingweixia2005@163.com

(Received 13 August 2009; accepted 27 August 2009; online 5 September 2009)

The conformation of the N—H bond in the title compound, C12H16BrNO, is syn to the ortho-methyl substituent. There are two unique molecules in the asymmetric unit. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules, forming infinite chains down [010].

Related literature

For a study of the effect of ring and side-chain substitution on the crystal structures of aromatic amides, see: Gowda et al. (2007[Gowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o1983-o1984.]). For related structures, see: Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2631-o2632.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3788.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2331-o2332.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16BrNO

  • Mr = 270.17

  • Monoclinic, P 21 /c

  • a = 11.764 (3) Å

  • b = 19.584 (5) Å

  • c = 12.956 (3) Å

  • β = 117.877 (19)°

  • V = 2638.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.09 mm−1

  • T = 293 K

  • 0.42 × 0.37 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.357, Tmax = 0.438

  • 24481 measured reflections

  • 4634 independent reflections

  • 1875 reflections with I > 2σ(I)

  • Rint = 0.113

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.211

  • S = 1.01

  • 4634 reflections

  • 271 parameters

  • 65 restraints

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.14 2.989 (8) 170
N2—H2B⋯O1ii 0.86 2.14 2.943 (8) 155
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

As part of a study of the effect of ring and side chain substitutions on the crystal structures of chemically and biologically important class of compounds such as aromatic amides (Gowda, Kozisek et al., 2007), We now report the the crystal structure of the title compound, (I).

As shown in Fig.1, the title compound includes both the ortho-methyl and the p-Br-substituted phenyl group and an imide group. The title compound, (I), (Fig. 1) is structural isomer of both the 2-chloro and the 3-chloro substituent in N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2007a) and N-(2,3-Dichlorophenyl)-2,2,2-trimethylacetamide (Gowda et al., 2007b). The conformation of the N–H bond in the title compound is syn to the ortho-methyl substituent, similar to that in both the 2-chloro and the 3-chloro-substituted amides, but in contrast to the anti conformation observed for the corresponding 3-chloro-substituted N-(3-Chlorophenyl)-2,2,2-trimethylacetamide (Gowda et al., 2007c). The amide H atom is involved in an intramolecular hydrogen bond with the O atom of the carbonyl group.

In the crystal structure, these molecules are linked into infinite one-dimensional chains by intermolecular N–H···O hydrogen bonds running along [010] direction (Fig. 2, Table 1).

Related literature top

For our study of the effect of ring and side-chain substitution on the crystal structures of aromatic amides, see: Gowda et al. (2007). For related structures, see: Gowda et al. (2007a,b,c).

Experimental top

2,2,2-Trimethyl-N-(2-methylphenyl)acetamide (0.95 5 g, 5 mmol) was added slowly by cannulation to a stirred suspension of p-nitroaniline (0.690 g, 3 mmol) in chloroform (50 ml) at room temperature. After stirring for 2 h the solution was quenched with saturated aqueous sodium bicarbonate solution (20 ml) the layers were separated and the aqueous layer was extracted with chloroform, the combined organic extracts were washed with water (20 ml), dried (MgSO4) and evaporated under reduced pressure to give the crude product as viscous brown oil. Then purification by short column chromatography (chloroform) and recrystallization from chloroform gave the compound (I) as brown needles crystals (1.094 g, 81%).

Refinement top

H atoms were treated as riding, with C—H distances in the range of 0.93–0.96 Å and N—H distances of 0.86 Å, and were refined as riding with Uiso(H) = 1.2Ueq(N and C in phenyl ring) and Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. One-dimensional structure of (I) along [010] direction, Hydrogen bonds are shown in the dashing line.
N-(4-Bromo-2-methylphenyl)pivalamide top
Crystal data top
C12H16BrNOF(000) = 1104
Mr = 270.17Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3412 reflections
a = 11.764 (3) Åθ = 2.2–19.4°
b = 19.584 (5) ŵ = 3.09 mm1
c = 12.956 (3) ÅT = 293 K
β = 117.877 (19)°Block, colourless
V = 2638.5 (11) Å30.42 × 0.37 × 0.32 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
4634 independent reflections
Radiation source: fine-focus sealed tube1875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.113
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1313
Tmin = 0.357, Tmax = 0.438k = 2323
24481 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0858P)2 + 4.1364P]
where P = (Fo2 + 2Fc2)/3
4634 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.90 e Å3
65 restraintsΔρmin = 0.70 e Å3
Crystal data top
C12H16BrNOV = 2638.5 (11) Å3
Mr = 270.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.764 (3) ŵ = 3.09 mm1
b = 19.584 (5) ÅT = 293 K
c = 12.956 (3) Å0.42 × 0.37 × 0.32 mm
β = 117.877 (19)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4634 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1875 reflections with I > 2σ(I)
Tmin = 0.357, Tmax = 0.438Rint = 0.113
24481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06465 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.01Δρmax = 0.90 e Å3
4634 reflectionsΔρmin = 0.70 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.96107 (9)0.07766 (6)1.22541 (8)0.0941 (5)
Br20.00476 (11)0.12629 (7)0.17802 (9)0.1081 (5)
N10.4710 (6)0.0356 (3)0.7724 (5)0.0521 (16)
H1A0.44920.00410.74120.063*
N20.4775 (6)0.2083 (3)0.2649 (5)0.0665 (19)
H2B0.47770.24970.28710.080*
O10.4160 (5)0.1460 (3)0.7638 (5)0.0731 (17)
O20.5853 (6)0.1099 (3)0.3045 (5)0.089 (2)
C10.8081 (8)0.0605 (4)1.0861 (7)0.058 (2)
C20.6924 (8)0.0724 (4)1.0821 (6)0.054 (2)
H2A0.68840.08711.14860.065*
C30.5816 (8)0.0626 (4)0.9801 (6)0.053 (2)
H3A0.50240.06970.97800.064*
C40.5866 (7)0.0423 (3)0.8792 (6)0.0465 (19)
C50.7052 (8)0.0280 (4)0.8833 (6)0.052 (2)
C60.8141 (8)0.0384 (4)0.9878 (7)0.060 (2)
H6A0.89420.03030.99220.073*
C70.7118 (8)0.0065 (5)0.7749 (7)0.081 (3)
H7A0.79980.00130.79340.121*
H7B0.67640.04190.71710.121*
H7C0.66340.03480.74500.121*
C80.3938 (7)0.0895 (4)0.7178 (6)0.0503 (18)
C90.2783 (8)0.0769 (4)0.5992 (6)0.0594 (19)
C100.1890 (9)0.0268 (5)0.6154 (8)0.094 (3)
H10A0.16040.04620.66740.142*
H10B0.23410.01500.64780.142*
H10C0.11590.01780.54120.142*
C110.2083 (9)0.1434 (4)0.5504 (8)0.098 (3)
H11A0.18380.16330.60480.147*
H11B0.13280.13490.47770.147*
H11C0.26380.17430.53760.147*
C120.3226 (10)0.0449 (5)0.5156 (7)0.100 (3)
H12A0.37940.07590.50470.150*
H12B0.24910.03600.44160.150*
H12C0.36700.00290.54810.150*
C130.1525 (9)0.1490 (4)0.0371 (7)0.062 (2)
C140.2695 (10)0.1463 (4)0.0340 (7)0.070 (2)
H14A0.27660.13180.09910.084*
C150.3774 (8)0.1652 (4)0.0661 (7)0.067 (2)
H15A0.45760.16400.06840.080*
C160.3671 (8)0.1861 (4)0.1639 (7)0.053 (2)
C170.2495 (10)0.1873 (4)0.1621 (7)0.064 (2)
C180.1419 (9)0.1689 (4)0.0592 (8)0.068 (2)
H18A0.06120.17010.05580.081*
C190.2349 (10)0.2096 (5)0.2664 (7)0.093 (3)
H19A0.14610.20680.24830.139*
H19B0.26430.25580.28600.139*
H19C0.28510.18030.33140.139*
C200.5824 (9)0.1700 (5)0.3295 (8)0.074 (2)
C210.6956 (13)0.2023 (7)0.4300 (12)0.149 (3)
C220.8063 (12)0.1606 (6)0.4813 (11)0.152 (3)
H22A0.78600.11870.50750.228*
H22B0.87310.18400.54660.228*
H22C0.83500.15070.42470.228*
C230.7298 (12)0.2717 (6)0.3915 (11)0.152 (3)
H23A0.80040.29260.45730.228*
H23B0.65650.30150.36280.228*
H23C0.75340.26370.33100.228*
C240.6485 (12)0.2294 (6)0.5109 (11)0.154 (3)
H24A0.62430.19210.54450.230*
H24B0.57520.25830.46830.230*
H24C0.71550.25530.57190.230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0669 (7)0.1288 (10)0.0607 (6)0.0185 (6)0.0082 (5)0.0030 (6)
Br20.0852 (8)0.1378 (11)0.0688 (7)0.0078 (7)0.0089 (6)0.0144 (7)
N10.059 (4)0.042 (4)0.045 (4)0.005 (3)0.016 (3)0.001 (3)
N20.073 (5)0.048 (4)0.059 (4)0.004 (4)0.014 (4)0.010 (4)
O10.082 (4)0.042 (3)0.064 (3)0.003 (3)0.008 (3)0.005 (3)
O20.096 (5)0.045 (4)0.084 (4)0.010 (3)0.006 (4)0.018 (3)
C10.062 (6)0.056 (5)0.053 (5)0.006 (4)0.024 (4)0.005 (4)
C20.063 (6)0.059 (5)0.037 (4)0.003 (4)0.021 (4)0.000 (4)
C30.055 (5)0.055 (5)0.048 (5)0.001 (4)0.024 (4)0.001 (4)
C40.053 (5)0.037 (4)0.043 (5)0.003 (4)0.017 (4)0.001 (4)
C50.056 (6)0.053 (5)0.049 (5)0.000 (4)0.026 (4)0.004 (4)
C60.047 (5)0.068 (6)0.066 (6)0.002 (4)0.026 (5)0.008 (5)
C70.078 (7)0.100 (7)0.083 (6)0.002 (5)0.052 (6)0.023 (6)
C80.059 (4)0.047 (5)0.044 (4)0.000 (4)0.023 (3)0.003 (4)
C90.069 (5)0.049 (4)0.044 (4)0.001 (3)0.013 (3)0.002 (3)
C100.078 (6)0.100 (7)0.081 (6)0.023 (5)0.016 (5)0.001 (5)
C110.093 (7)0.069 (5)0.072 (6)0.015 (5)0.010 (5)0.001 (4)
C120.120 (8)0.120 (7)0.050 (5)0.026 (6)0.031 (5)0.012 (5)
C130.072 (7)0.060 (6)0.050 (5)0.003 (5)0.026 (5)0.000 (4)
C140.089 (7)0.071 (6)0.048 (5)0.011 (5)0.031 (5)0.004 (4)
C150.066 (6)0.070 (6)0.063 (6)0.007 (5)0.029 (5)0.011 (5)
C160.057 (6)0.038 (5)0.057 (5)0.006 (4)0.020 (5)0.001 (4)
C170.095 (7)0.049 (5)0.048 (5)0.012 (5)0.033 (5)0.003 (4)
C180.074 (6)0.069 (6)0.074 (6)0.010 (5)0.045 (6)0.002 (5)
C190.118 (8)0.112 (8)0.069 (6)0.025 (7)0.061 (6)0.019 (6)
C200.087 (6)0.054 (5)0.072 (5)0.005 (5)0.029 (5)0.004 (4)
C210.125 (5)0.105 (5)0.136 (5)0.001 (4)0.006 (4)0.032 (4)
C220.126 (6)0.106 (5)0.138 (6)0.000 (4)0.010 (4)0.032 (4)
C230.126 (6)0.108 (5)0.140 (6)0.004 (4)0.007 (4)0.029 (4)
C240.129 (6)0.112 (5)0.137 (6)0.002 (4)0.006 (4)0.032 (4)
Geometric parameters (Å, º) top
Br1—C11.889 (8)C11—H11B0.9600
Br2—C131.894 (8)C11—H11C0.9600
N1—C81.355 (9)C12—H12A0.9600
N1—C41.422 (9)C12—H12B0.9600
N1—H1A0.8600C12—H12C0.9600
N2—C201.349 (10)C13—C141.359 (11)
N2—C161.413 (9)C13—C181.368 (11)
N2—H2B0.8600C14—C151.375 (11)
O1—C81.225 (8)C14—H14A0.9300
O2—C201.226 (9)C15—C161.389 (11)
C1—C21.358 (10)C15—H15A0.9300
C1—C61.377 (11)C16—C171.374 (11)
C2—C31.368 (10)C17—C181.390 (11)
C2—H2A0.9300C17—C191.503 (11)
C3—C41.393 (10)C18—H18A0.9300
C3—H3A0.9300C19—H19A0.9600
C4—C51.399 (10)C19—H19B0.9600
C5—C61.377 (10)C19—H19C0.9600
C5—C71.503 (10)C20—C211.499 (14)
C6—H6A0.9300C21—C221.412 (15)
C7—H7A0.9600C21—C241.494 (18)
C7—H7B0.9600C21—C231.564 (17)
C7—H7C0.9600C22—H22A0.9600
C8—C91.521 (10)C22—H22B0.9600
C9—C111.513 (10)C22—H22C0.9600
C9—C101.522 (11)C23—H23A0.9600
C9—C121.539 (11)C23—H23B0.9600
C10—H10A0.9600C23—H23C0.9600
C10—H10B0.9600C24—H24A0.9600
C10—H10C0.9600C24—H24B0.9600
C11—H11A0.9600C24—H24C0.9600
C8—N1—C4122.7 (6)C9—C12—H12C109.5
C8—N1—H1A118.7H12A—C12—H12C109.5
C4—N1—H1A118.7H12B—C12—H12C109.5
C20—N2—C16125.6 (7)C14—C13—C18120.5 (8)
C20—N2—H2B117.2C14—C13—Br2118.6 (7)
C16—N2—H2B117.2C18—C13—Br2120.8 (7)
C2—C1—C6120.1 (8)C13—C14—C15119.5 (8)
C2—C1—Br1119.7 (6)C13—C14—H14A120.3
C6—C1—Br1120.1 (7)C15—C14—H14A120.3
C1—C2—C3119.9 (7)C14—C15—C16120.3 (8)
C1—C2—H2A120.1C14—C15—H15A119.8
C3—C2—H2A120.1C16—C15—H15A119.8
C2—C3—C4120.5 (8)C17—C16—C15120.4 (8)
C2—C3—H3A119.7C17—C16—N2119.5 (8)
C4—C3—H3A119.7C15—C16—N2120.1 (8)
C3—C4—C5120.0 (7)C16—C17—C18118.0 (8)
C3—C4—N1119.9 (7)C16—C17—C19121.8 (8)
C5—C4—N1120.1 (7)C18—C17—C19120.1 (9)
C6—C5—C4117.5 (7)C13—C18—C17121.2 (8)
C6—C5—C7122.0 (8)C13—C18—H18A119.4
C4—C5—C7120.5 (7)C17—C18—H18A119.4
C5—C6—C1121.9 (8)C17—C19—H19A109.5
C5—C6—H6A119.0C17—C19—H19B109.5
C1—C6—H6A119.0H19A—C19—H19B109.5
C5—C7—H7A109.5C17—C19—H19C109.5
C5—C7—H7B109.5H19A—C19—H19C109.5
H7A—C7—H7B109.5H19B—C19—H19C109.5
C5—C7—H7C109.5O2—C20—N2120.0 (8)
H7A—C7—H7C109.5O2—C20—C21120.7 (9)
H7B—C7—H7C109.5N2—C20—C21119.2 (9)
O1—C8—N1120.7 (7)C22—C21—C24116.0 (13)
O1—C8—C9121.6 (7)C22—C21—C20114.5 (11)
N1—C8—C9117.7 (7)C24—C21—C20106.8 (12)
C11—C9—C8109.7 (6)C22—C21—C23109.6 (13)
C11—C9—C10109.6 (8)C24—C21—C2398.6 (10)
C8—C9—C10108.3 (6)C20—C21—C23110.2 (10)
C11—C9—C12110.7 (7)C21—C22—H22A109.5
C8—C9—C12109.9 (7)C21—C22—H22B109.5
C10—C9—C12108.5 (7)H22A—C22—H22B109.5
C9—C10—H10A109.5C21—C22—H22C109.5
C9—C10—H10B109.5H22A—C22—H22C109.5
H10A—C10—H10B109.5H22B—C22—H22C109.5
C9—C10—H10C109.5C21—C23—H23A109.5
H10A—C10—H10C109.5C21—C23—H23B109.5
H10B—C10—H10C109.5H23A—C23—H23B109.5
C9—C11—H11A109.5C21—C23—H23C109.5
C9—C11—H11B109.5H23A—C23—H23C109.5
H11A—C11—H11B109.5H23B—C23—H23C109.5
C9—C11—H11C109.5C21—C24—H24A109.5
H11A—C11—H11C109.5C21—C24—H24B109.5
H11B—C11—H11C109.5H24A—C24—H24B109.5
C9—C12—H12A109.5C21—C24—H24C109.5
C9—C12—H12B109.5H24A—C24—H24C109.5
H12A—C12—H12B109.5H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.142.989 (8)170
N2—H2B···O1ii0.862.142.943 (8)155
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H16BrNO
Mr270.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.764 (3), 19.584 (5), 12.956 (3)
β (°) 117.877 (19)
V3)2638.5 (11)
Z8
Radiation typeMo Kα
µ (mm1)3.09
Crystal size (mm)0.42 × 0.37 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.357, 0.438
No. of measured, independent and
observed [I > 2σ(I)] reflections
24481, 4634, 1875
Rint0.113
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.211, 1.01
No. of reflections4634
No. of parameters271
No. of restraints65
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.70

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.142.989 (8)169.5
N2—H2B···O1ii0.862.142.943 (8)154.8
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.
 

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2631–o2632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2331–o2332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o1983–o1984.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds