metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1161-m1162
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: {6,6′-Dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}(ethanol-1κO)-μ-nitrato-1:2κ2O:O′-dinitrato-1κ4O,O′-samarium(III)zinc(II)

aCollege of Mechanical and Materials Engineering, Jiujiang University, 332005 Jiujiang, JiangXi, People's Republic of China, bVacational Education Center of JiLin Oil Feild, 131200 SongYuan, JiLin, People's Republic of China, and cThe Pipeline Tools Subsidiary, Well Drilling Technology and Service Corporation of Jilin Oil Field, 131200 SongYuan, JiLin, People's Republic of China
*Correspondence e-mail: qhuang111@163.com

(Received 13 August 2009; accepted 23 August 2009; online 5 September 2009)

In the title heteronuclear ZnII–SmIII complex, [SmZn(C18H18N2O4)(NO3)3(CH3CH2OH)], with the hexa­dentate Schiff base compartmental ligand N,N′-bis­(3-methoxy­salicyl­idene)ethyl­enediamine (H2L), the SmIII and ZnII ions are triply bridged by two phenolate O atoms from the Schiff base ligand and one nitrate anion. The five-coordinate ZnII ion is in a square-pyramidal geometry formed by the donor centers of two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The SmIII center is in a ten-fold coordination of O atoms, involving the phenolate O atoms, two meth­oxy O atoms, one ethanol O atom, and two O atoms from two nitrate anions and one from the bridging nitrate anion. In the crystal, inter­molecular O—H⋯O and C—H⋯O inter­actions generate a layer structure extending parallel to (101).

Related literature

For the preparation, magnetic and optical properties of 3d-4f hetorometallic dinuclear complexes, see: Baggio et al. (2000[Baggio, R., Garland, M. T., Moreno, Y., Pena, O., Perec, M. & Spodine, E. (2000). J. Chem. Soc. Dalton Trans. pp. 2061-2066.]); Caravan et al. (1999[Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. (1999). Chem. Rev. 99, 2293-2352.]); Edder et al. (2000[Edder, C., Piguet, C., Bernardinelli, G., Mareda, J., Bochet, C. G., Bunzli, J.-C. G. & Hopfgartner, G. (2000). Inorg. Chem. 39, 5059-5073.]); Knoer et al. (2005[Knoer, R., Lin, H.-H., Wei, H.-H. & Mohanta, S. (2005). Inorg. Chem. 44, 3524-3536.]).

[Scheme 1]

Experimental

Crystal data
  • [SmZn(C18H18N2O4)(NO3)3(C2H6O)]

  • Mr = 774.16

  • Monoclinic, P 21 /n

  • a = 9.975 (3) Å

  • b = 13.780 (4) Å

  • c = 19.889 (6) Å

  • β = 91.745 (4)°

  • V = 2732.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.08 mm−1

  • T = 293 K

  • 0.26 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.501, Tmax = 0.592

  • 16112 measured reflections

  • 4741 independent reflections

  • 4175 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.079

  • S = 1.08

  • 4741 reflections

  • 377 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯O9 0.96 2.52 3.237 (6) 132
O14—H14S⋯O6i 0.855 (19) 1.87 (2) 2.718 (4) 171 (5)
C8—H8⋯O11ii 0.93 2.55 3.440 (5) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The potential applications of trivalent lanthanide complexes as contrast agent for magnetic resonance imaging and stains for fluorescence imaging have prompted considerable interest in the preparation, magnetic and optical properties of 3 d-4f hetorometallic dinuclear complexes (Baggio et al., 2000; Caravan et al., 1999; Edder et al., 2000; Knoer et al., 2005). we report here the synthesis and X-ray crystal structure analysis of the title complex, (I), a new ZnII—SmIII complex with salen-type Schiff base N,N'-bis(3-methoxysalicylidene) ethylenediamine(H2L).

Complex (I) crystallizes in the space group P21/n, with zinc and samarium triply bridged by two phenolate O atoms provided by a salen-type Schiff base ligand and one nitrate. The inner salen-type cavity is occupied by zinc(II), while samarium(III) is present in the open and larger portion of the dinucleating compartmental Schiff base ligand.

The SmIII center has a decacoordination environment of O atoms, involving the phenolate O atoms, two methoxy O atoms, one ethanol O atom, two O atoms from two nitrates and one from the bridging nitrate. The five kinds of Sm—O bond distances are significantly different, the longest being the Sm—O(methoxy) separations and the shortest being the Sm—O5(bridging nitrate).

The ZnII is in a square-pyramidal geometry and is five-coordinated by two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms.

Adjacent molecules are held together by typical O—H···O hydrogen bonds and weak C—H···O interactions. these link the molecules into a two-dimensional layer structure(Fig 2).

Related literature top

For the preparation, magnetic and optical

properties of 3d-4f hetorometallic dinuclear complexes, see: Baggio et al. (2000); Caravan et al. (1999); Edder et al. (2000); Knoer et al. (2005).

Experimental top

H2L was prepared by the 2:1 condensation of 3-methoxysalicylaldehyde and ethylenediamine in methanol. Complex (I) was obtained by the treatment of zinc(II) acetate dihydrate (0.188 g, 1 mmol) with H2L(0.328 g, 1 mmol) in ethanol solution (80 ml) under reflux for 3 h and then for another 3 h after the addition of samarium(III) nitrate hexahydrate(0.444 g, 1 mmol). The reaction mixture was cooled and the resulting precipitate was filtered off, washed with diethyl ether and dried in vacuo. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature of a ethanol solution. Analysis calculated for C20H24N5O14SmZn: C 31.03, H 3.12, N 9.05, Sm 19.42, Zn 8.45%; found: C 31.10, H 2.98, N 8.99, Sm 20.01, Zn 8.40%. IR(KBr, cm-1): 1640(C=N), 1386,1490(nitrate).

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.97 (methylene), 0.96 Å (methyl) and 0.93 Å (aromatic), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The hydroxyl H atom, H14s, was located in a difference Fourier map and the O14—H14s was restrained to 0.88 Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: APEX2 (Bruker, 2004); software used to prepare material for publication: APEX2 (Bruker, 2004) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the c axis; hydrogen bonds are shown as dashed lines.
{6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- 1κ4O1,O1',O6,O6': 2κ4O1,N,N',O1'}(ethanol-1κO)- µ-nitrato-1:2κ2O:O'-dinitrato-1κ4O,O'- samarium(III)zinc(II) top
Crystal data top
[SmZn(C18H18N2O4)(NO3)3(C2H6O)]F(000) = 1532
Mr = 774.16Dx = 1.882 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5725 reflections
a = 9.975 (3) Åθ = 2.5–28.2°
b = 13.780 (4) ŵ = 3.08 mm1
c = 19.889 (6) ÅT = 293 K
β = 91.745 (4)°Block, yellow
V = 2732.4 (13) Å30.26 × 0.23 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
4741 independent reflections
Radiation source: fine-focus sealed tube4175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.501, Tmax = 0.592k = 1516
16112 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.045P)2 + 4.1668P]
where P = (Fo2 + 2Fc2)/3
4741 reflections(Δ/σ)max < 0.001
377 parametersΔρmax = 0.67 e Å3
3 restraintsΔρmin = 0.70 e Å3
Crystal data top
[SmZn(C18H18N2O4)(NO3)3(C2H6O)]V = 2732.4 (13) Å3
Mr = 774.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.975 (3) ŵ = 3.08 mm1
b = 13.780 (4) ÅT = 293 K
c = 19.889 (6) Å0.26 × 0.23 × 0.19 mm
β = 91.745 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
4741 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4175 reflections with I > 2σ(I)
Tmin = 0.501, Tmax = 0.592Rint = 0.021
16112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.67 e Å3
4741 reflectionsΔρmin = 0.70 e Å3
377 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5387 (4)0.1513 (4)0.1046 (2)0.0435 (11)
H1A0.62260.18460.11080.065*
H1B0.50500.16090.05940.065*
H1C0.55170.08320.11260.065*
C20.4878 (4)0.1904 (3)0.21745 (19)0.0287 (8)
C30.4091 (4)0.2491 (3)0.25846 (18)0.0248 (8)
C40.4475 (4)0.2570 (3)0.32728 (19)0.0309 (9)
C50.5626 (4)0.2059 (3)0.3513 (2)0.0405 (11)
H50.58940.21190.39630.049*
C60.6343 (5)0.1489 (4)0.3106 (2)0.0468 (12)
H60.70830.11510.32800.056*
C70.5978 (4)0.1404 (3)0.2430 (2)0.0416 (10)
H70.64730.10110.21500.050*
C80.3727 (4)0.3097 (3)0.37649 (19)0.0325 (9)
H80.40420.30700.42090.039*
C90.1883 (5)0.4013 (3)0.4187 (2)0.0419 (11)
H9A0.19130.47160.41740.050*
H9B0.22360.37970.46210.050*
C100.0444 (5)0.3652 (4)0.4069 (2)0.0432 (11)
H10A0.03800.29760.42010.052*
H10B0.01620.40270.43400.052*
C110.1155 (4)0.3718 (3)0.3160 (2)0.0376 (10)
H110.17930.36520.34880.045*
C120.1630 (4)0.3768 (3)0.2471 (2)0.0337 (9)
C130.3008 (4)0.3975 (3)0.2340 (3)0.0454 (11)
H130.35760.40410.27000.054*
C140.3520 (4)0.4080 (3)0.1702 (3)0.0482 (12)
H140.44270.42120.16310.058*
C150.2698 (4)0.3991 (3)0.1159 (2)0.0419 (11)
H150.30440.40810.07240.050*
C160.1355 (4)0.3769 (3)0.1268 (2)0.0327 (9)
C170.0801 (4)0.3635 (3)0.1915 (2)0.0291 (8)
C180.0918 (5)0.3868 (4)0.0095 (2)0.0523 (13)
H18A0.15940.34060.00400.078*
H18B0.01880.38350.02070.078*
H18C0.12950.45090.00850.078*
C190.0334 (4)0.0595 (3)0.1448 (3)0.0453 (11)
H19A0.03600.00540.17610.054*
H19B0.04210.03370.09980.054*
C200.0964 (5)0.1103 (4)0.1492 (3)0.0640 (15)
H20A0.10400.13760.19340.096*
H20B0.16830.06510.14090.096*
H20C0.10140.16120.11630.096*
H14S0.189 (4)0.093 (3)0.1907 (18)0.045 (14)*
N10.2671 (4)0.3598 (3)0.36409 (16)0.0334 (8)
N20.0069 (4)0.3757 (3)0.33567 (17)0.0365 (8)
N30.2742 (4)0.5201 (3)0.18223 (18)0.0429 (8)
N40.3575 (4)0.3693 (3)0.00107 (19)0.0461 (10)
N50.1636 (4)0.1430 (3)0.00124 (17)0.0380 (8)
O10.3020 (3)0.29131 (19)0.22943 (13)0.0285 (6)
O20.0480 (2)0.3360 (2)0.19722 (13)0.0310 (6)
O30.4443 (3)0.1886 (2)0.15072 (13)0.0340 (6)
O40.0437 (3)0.3650 (2)0.07643 (14)0.0378 (7)
O50.2537 (3)0.4574 (2)0.13814 (15)0.0460 (8)
O60.2370 (3)0.5111 (2)0.24316 (13)0.0334 (6)
O70.3498 (5)0.6110 (3)0.1638 (3)0.0920 (15)
O80.4194 (3)0.3382 (2)0.05096 (16)0.0441 (7)
O90.2306 (3)0.3687 (2)0.00015 (14)0.0422 (7)
O100.4160 (5)0.3958 (4)0.0499 (2)0.0997 (17)
O110.0688 (3)0.1928 (2)0.02181 (14)0.0383 (7)
O120.2775 (3)0.1549 (2)0.02628 (15)0.0408 (7)
O130.1458 (4)0.0871 (3)0.04800 (19)0.0694 (11)
O140.1442 (3)0.1242 (2)0.16021 (15)0.0361 (7)
Sm10.209482 (19)0.287372 (15)0.113944 (9)0.02816 (9)
Zn10.17006 (4)0.38157 (3)0.27338 (2)0.02711 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (2)0.060 (3)0.036 (2)0.016 (2)0.0029 (18)0.011 (2)
C20.0245 (19)0.034 (2)0.027 (2)0.0018 (16)0.0040 (15)0.0050 (16)
C30.0228 (19)0.028 (2)0.0233 (19)0.0031 (15)0.0020 (14)0.0067 (15)
C40.028 (2)0.038 (2)0.027 (2)0.0031 (17)0.0074 (16)0.0051 (17)
C50.035 (2)0.058 (3)0.028 (2)0.001 (2)0.0093 (18)0.0101 (19)
C60.036 (2)0.058 (3)0.046 (3)0.012 (2)0.012 (2)0.015 (2)
C70.036 (2)0.045 (3)0.044 (3)0.0095 (19)0.0013 (19)0.007 (2)
C80.036 (2)0.041 (2)0.0203 (19)0.0063 (18)0.0052 (16)0.0038 (17)
C90.056 (3)0.049 (3)0.021 (2)0.003 (2)0.0044 (18)0.0073 (19)
C100.052 (3)0.053 (3)0.026 (2)0.004 (2)0.0140 (19)0.0007 (19)
C110.035 (2)0.036 (2)0.043 (3)0.0011 (18)0.0172 (19)0.0053 (19)
C120.026 (2)0.031 (2)0.045 (2)0.0022 (16)0.0072 (17)0.0053 (18)
C130.028 (2)0.041 (3)0.068 (3)0.0012 (19)0.015 (2)0.008 (2)
C140.022 (2)0.049 (3)0.074 (4)0.0056 (19)0.004 (2)0.007 (2)
C150.029 (2)0.038 (3)0.057 (3)0.0059 (18)0.010 (2)0.005 (2)
C160.029 (2)0.027 (2)0.042 (2)0.0032 (16)0.0028 (17)0.0083 (17)
C170.025 (2)0.024 (2)0.038 (2)0.0009 (15)0.0006 (16)0.0061 (16)
C180.051 (3)0.066 (3)0.039 (3)0.017 (2)0.013 (2)0.001 (2)
C190.038 (3)0.038 (3)0.060 (3)0.002 (2)0.002 (2)0.006 (2)
C200.036 (3)0.059 (3)0.097 (5)0.002 (2)0.009 (3)0.003 (3)
N10.043 (2)0.0359 (19)0.0215 (16)0.0051 (16)0.0014 (14)0.0033 (14)
N20.040 (2)0.041 (2)0.0291 (18)0.0007 (16)0.0111 (15)0.0003 (15)
N30.058 (2)0.038 (2)0.0329 (14)0.0040 (17)0.0048 (15)0.0028 (12)
N40.053 (3)0.048 (2)0.038 (2)0.0035 (18)0.0141 (18)0.0109 (18)
N50.047 (2)0.038 (2)0.0287 (18)0.0019 (17)0.0023 (16)0.0059 (16)
O10.0244 (14)0.0385 (16)0.0221 (14)0.0051 (11)0.0042 (10)0.0010 (11)
O20.0226 (13)0.0421 (16)0.0282 (14)0.0061 (12)0.0005 (11)0.0067 (12)
O30.0251 (14)0.0489 (17)0.0279 (15)0.0091 (12)0.0016 (11)0.0054 (12)
O40.0317 (15)0.0516 (18)0.0298 (15)0.0093 (13)0.0054 (12)0.0056 (13)
O50.071 (2)0.0360 (17)0.0308 (15)0.0057 (15)0.0056 (15)0.0015 (11)
O60.0410 (16)0.0288 (15)0.0303 (12)0.0026 (12)0.0015 (11)0.0031 (11)
O70.114 (4)0.069 (3)0.095 (4)0.018 (3)0.033 (3)0.002 (2)
O80.0332 (16)0.053 (2)0.0460 (19)0.0035 (14)0.0014 (13)0.0090 (15)
O90.0420 (18)0.054 (2)0.0309 (16)0.0052 (14)0.0023 (13)0.0070 (14)
O100.085 (3)0.143 (5)0.074 (3)0.015 (3)0.042 (3)0.058 (3)
O110.0355 (16)0.0480 (18)0.0310 (16)0.0025 (13)0.0073 (12)0.0040 (13)
O120.0341 (17)0.0488 (19)0.0393 (17)0.0041 (13)0.0037 (13)0.0085 (14)
O130.082 (3)0.069 (3)0.056 (2)0.001 (2)0.013 (2)0.036 (2)
O140.0323 (16)0.0368 (17)0.0386 (17)0.0058 (12)0.0078 (13)0.0112 (13)
Sm10.02985 (13)0.03342 (14)0.02110 (13)0.00080 (8)0.00085 (8)0.00187 (8)
Zn10.0286 (2)0.0328 (3)0.0200 (2)0.00050 (18)0.00205 (17)0.00135 (17)
Geometric parameters (Å, º) top
C1—O31.430 (5)C17—O21.334 (5)
C1—H1A0.9600C18—O41.433 (5)
C1—H1B0.9600C18—H18A0.9600
C1—H1C0.9600C18—H18B0.9600
C2—C71.379 (6)C18—H18C0.9600
C2—O31.384 (5)C19—O141.446 (5)
C2—C31.406 (6)C19—C201.477 (7)
C3—O11.333 (4)C19—H19A0.9700
C3—C41.414 (5)C19—H19B0.9700
C4—C51.418 (6)C20—H20A0.9600
C4—C81.444 (6)C20—H20B0.9600
C5—C61.348 (7)C20—H20C0.9600
C5—H50.9300N1—Zn12.043 (3)
C6—C71.387 (6)N2—Zn12.077 (3)
C6—H60.9300N3—O51.244 (5)
C7—H70.9300N3—O61.284 (4)
C8—N11.277 (5)N3—O71.512 (6)
C8—H80.9300N4—O101.205 (5)
C9—N11.474 (5)N4—O81.264 (5)
C9—C101.530 (7)N4—O91.267 (5)
C9—H9A0.9700N5—O131.217 (5)
C9—H9B0.9700N5—O121.257 (4)
C10—N21.462 (5)N5—O111.265 (5)
C10—H10A0.9700O1—Zn12.028 (3)
C10—H10B0.9700O1—Sm12.450 (3)
C11—N21.272 (6)O2—Zn12.014 (3)
C11—C121.438 (6)O2—Sm12.439 (3)
C11—H110.9300O3—Sm12.787 (3)
C12—C171.413 (6)O4—Sm12.822 (3)
C12—C131.420 (6)O5—Sm12.429 (3)
C13—C141.362 (7)O6—Zn12.004 (3)
C13—H130.9300O8—Sm12.570 (3)
C14—C151.380 (7)O9—Sm12.545 (3)
C14—H140.9300O11—Sm12.621 (3)
C15—C161.385 (6)O12—Sm12.627 (3)
C15—H150.9300O14—Sm12.523 (3)
C16—O41.387 (5)O14—H14S0.855 (19)
C16—C171.398 (6)
O3—C1—H1A109.5O5—N3—O7118.5 (4)
O3—C1—H1B109.5O6—N3—O7118.0 (3)
H1A—C1—H1B109.5O10—N4—O8121.8 (4)
O3—C1—H1C109.5O10—N4—O9121.5 (4)
H1A—C1—H1C109.5O8—N4—O9116.7 (3)
H1B—C1—H1C109.5O13—N5—O12121.7 (4)
C7—C2—O3124.6 (4)O13—N5—O11121.8 (4)
C7—C2—C3121.7 (4)O12—N5—O11116.6 (3)
O3—C2—C3113.7 (3)C3—O1—Zn1127.1 (2)
O1—C3—C2117.0 (3)C3—O1—Sm1132.1 (2)
O1—C3—C4125.1 (3)Zn1—O1—Sm1100.77 (10)
C2—C3—C4117.8 (3)C17—O2—Zn1122.1 (2)
C3—C4—C5118.7 (4)C17—O2—Sm1132.1 (2)
C3—C4—C8124.4 (4)Zn1—O2—Sm1101.52 (10)
C5—C4—C8116.8 (4)C2—O3—C1115.4 (3)
C6—C5—C4121.8 (4)C2—O3—Sm1118.7 (2)
C6—C5—H5119.1C1—O3—Sm1124.9 (2)
C4—C5—H5119.1C16—O4—C18115.8 (3)
C5—C6—C7120.1 (4)C16—O4—Sm1117.3 (2)
C5—C6—H6119.9C18—O4—Sm1126.7 (3)
C7—C6—H6119.9N3—O5—Sm1146.6 (3)
C2—C7—C6119.9 (4)N3—O6—Zn1118.6 (2)
C2—C7—H7120.1N4—O8—Sm196.1 (2)
C6—C7—H7120.1N4—O9—Sm197.2 (2)
N1—C8—C4125.5 (4)N5—O11—Sm197.6 (2)
N1—C8—H8117.3N5—O12—Sm197.6 (2)
C4—C8—H8117.3C19—O14—Sm1132.6 (2)
N1—C9—C10106.2 (3)C19—O14—H14S103 (3)
N1—C9—H9A110.5Sm1—O14—H14S125 (3)
C10—C9—H9A110.5O5—Sm1—O273.74 (10)
N1—C9—H9B110.5O5—Sm1—O174.45 (10)
C10—C9—H9B110.5O2—Sm1—O166.10 (9)
H9A—C9—H9B108.7O5—Sm1—O14146.58 (10)
N2—C10—C9109.1 (3)O2—Sm1—O1479.28 (10)
N2—C10—H10A109.9O1—Sm1—O1476.81 (9)
C9—C10—H10A109.9O5—Sm1—O974.48 (10)
N2—C10—H10B109.9O2—Sm1—O9123.96 (10)
C9—C10—H10B109.9O1—Sm1—O9141.92 (10)
H10A—C10—H10B108.3O14—Sm1—O9138.33 (10)
N2—C11—C12125.3 (4)O5—Sm1—O871.83 (11)
N2—C11—H11117.4O2—Sm1—O8145.17 (10)
C12—C11—H11117.4O1—Sm1—O899.31 (9)
C17—C12—C13118.0 (4)O14—Sm1—O8130.09 (10)
C17—C12—C11123.7 (4)O9—Sm1—O849.82 (10)
C13—C12—C11118.2 (4)O5—Sm1—O11135.09 (10)
C14—C13—C12121.6 (4)O2—Sm1—O11105.13 (9)
C14—C13—H13119.2O1—Sm1—O11147.66 (9)
C12—C13—H13119.2O14—Sm1—O1170.91 (9)
C13—C14—C15120.4 (4)O9—Sm1—O1169.69 (10)
C13—C14—H14119.8O8—Sm1—O11102.80 (10)
C15—C14—H14119.8O5—Sm1—O12138.80 (10)
C14—C15—C16119.5 (4)O2—Sm1—O12146.17 (9)
C14—C15—H15120.3O1—Sm1—O12122.69 (9)
C16—C15—H15120.3O14—Sm1—O1272.40 (10)
C15—C16—O4124.8 (4)O9—Sm1—O1271.60 (10)
C15—C16—C17121.8 (4)O8—Sm1—O1268.60 (10)
O4—C16—C17113.5 (3)O11—Sm1—O1248.25 (9)
O2—C17—C16117.8 (3)O5—Sm1—O3105.83 (10)
O2—C17—C12123.5 (4)O2—Sm1—O3121.53 (8)
C16—C17—C12118.6 (4)O1—Sm1—O358.34 (8)
O4—C18—H18A109.5O14—Sm1—O372.15 (9)
O4—C18—H18B109.5O9—Sm1—O3110.93 (9)
H18A—C18—H18B109.5O8—Sm1—O364.54 (9)
O4—C18—H18C109.5O11—Sm1—O3111.62 (9)
H18A—C18—H18C109.5O12—Sm1—O366.62 (8)
H18B—C18—H18C109.5O5—Sm1—O480.93 (10)
O14—C19—C20111.1 (4)O2—Sm1—O458.08 (8)
O14—C19—H19A109.4O1—Sm1—O4123.23 (8)
C20—C19—H19A109.4O14—Sm1—O4101.26 (9)
O14—C19—H19B109.4O9—Sm1—O472.24 (9)
C20—C19—H19B109.4O8—Sm1—O4120.25 (9)
H19A—C19—H19B108.0O11—Sm1—O463.13 (9)
C19—C20—H20A109.5O12—Sm1—O4109.57 (9)
C19—C20—H20B109.5O3—Sm1—O4173.01 (9)
H20A—C20—H20B109.5O6—Zn1—O2104.55 (12)
C19—C20—H20C109.5O6—Zn1—O1100.96 (11)
H20A—C20—H20C109.5O2—Zn1—O182.54 (10)
H20B—C20—H20C109.5O6—Zn1—N1104.02 (13)
C8—N1—C9121.5 (3)O2—Zn1—N1151.32 (13)
C8—N1—Zn1128.0 (3)O1—Zn1—N189.69 (12)
C9—N1—Zn1110.2 (3)O6—Zn1—N2119.22 (13)
C11—N2—C10120.6 (4)O2—Zn1—N288.27 (13)
C11—N2—Zn1125.5 (3)O1—Zn1—N2139.80 (13)
C10—N2—Zn1113.6 (3)N1—Zn1—N279.99 (14)
O5—N3—O6123.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O120.962.352.995 (5)125
C18—H18B···O90.962.523.237 (6)132
O14—H14S···O6i0.86 (2)1.87 (2)2.718 (4)171 (5)
C8—H8···O11ii0.932.553.440 (5)160
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[SmZn(C18H18N2O4)(NO3)3(C2H6O)]
Mr774.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.975 (3), 13.780 (4), 19.889 (6)
β (°) 91.745 (4)
V3)2732.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)3.08
Crystal size (mm)0.26 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.501, 0.592
No. of measured, independent and
observed [I > 2σ(I)] reflections
16112, 4741, 4175
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.079, 1.08
No. of reflections4741
No. of parameters377
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.70

Computer programs: , SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), APEX2 (Bruker, 2004) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O90.962.523.237 (6)131.8
O14—H14S···O6i0.855 (19)1.87 (2)2.718 (4)171 (5)
C8—H8···O11ii0.932.553.440 (5)159.6
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support from the Educational Commission of Jiangxi Province of China (GJJ08448) and the Natural Science Foundation of Jiangxi Province of China (2008GQC0002).

References

First citationBaggio, R., Garland, M. T., Moreno, Y., Pena, O., Perec, M. & Spodine, E. (2000). J. Chem. Soc. Dalton Trans. pp. 2061–2066.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. (1999). Chem. Rev. 99, 2293–2352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdder, C., Piguet, C., Bernardinelli, G., Mareda, J., Bochet, C. G., Bunzli, J.-C. G. & Hopfgartner, G. (2000). Inorg. Chem. 39, 5059–5073.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKnoer, R., Lin, H.-H., Wei, H.-H. & Mohanta, S. (2005). Inorg. Chem. 44, 3524–3536.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1161-m1162
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds