organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

De­hydro­abietic acid

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: rxping2001@163.com

(Received 25 August 2009; accepted 3 September 2009; online 9 September 2009)

The title compound [systematic name: (1R,4aS,10aR)-7-iso­prop­yl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phen­anthrene-1-carboxylic acid], C20H28O2, has been isolated from disproportionated rosin which is obtained by isomerizing gum rosin with a Pd-C catalyst.. Two crystallographically independent mol­ecules exist in the asymmetric unit. In each mol­ecule, there are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclo­hexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the synthesis and uses of dehydro­abietic acid, see: Halbrook & Lawrence (1966[Halbrook, N. J. & Lawrence, R. V. (1966). J. Org. Chem. 31, 4246-4247.]); Jia et al. (2009[Jia, W. H., Rao, X. P., Song, Z. Q. & Shang, S. B. (2009). J. Surf. Det. 12, 261-267. .]); Piispanen et al. (2001[Piispanen, P. S., Hedman, B. & Norin, T. (2001).J. Surf. Det. 5, 165-168..]); Rao et al. (2006[Rao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301-o5302.]); Rao, Song & He (2008[Rao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512-516.]); Rao, Song, He & Jia (2008[Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56, 1575-1578.]); Sepulveda et al. (2005[Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharmacol. Res. 52, 429-437.]); Wada et al. (1985[Wada, H., Kodato, S., Kawamori, M., Morikawa, T., Nakai, H., Takeda, M., Saito, S., Onoda, Y. & Tamaki, H. (1985). Chem. Pharm. Bull. (Tokyo), 33, 1472-1487.]).

[Scheme 1]

Experimental

Crystal data
  • C20H28O2

  • Mr = 300.42

  • Monoclinic, P 21

  • a = 11.738 (2) Å

  • b = 11.875 (2) Å

  • c = 13.654 (3) Å

  • β = 107.50 (3)°

  • V = 1815.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) Tmin = 0.973, Tmax = 0.986

  • 3592 measured reflections

  • 3417 independent reflections

  • 2173 reflections with I > 2σ(I)

  • Rint = 0.086

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.182

  • S = 1.00

  • 3417 reflections

  • 361 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2D⋯O3i 0.82 1.82 2.621 (8) 165
O4—H4A⋯O1ii 0.82 1.79 2.598 (8) 168
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dehydroabietic acid is an abietane diterpenic resin acid which can be easily obtained from Pinus resin or commercial disproportionated rosin (Halbrook & Lawrence, 1966). The tri-cyclic hydrophenanthrene structure of dehydroabietic acid has strong hydrophobicity, so it can be used as raw material for the synthesis of surfactants (Piispanen et al., 2001; Jia et al., 2009). Dehydroabietic acid is also widely used as starting material for design and synthesis of biological compounds (Sepulveda et al., 2005; Rao, Song & He, 2008; Rao, Song He & Jia, 2008; Wada et al., 1985). In this work, we describe the crystal structure of the title compound.

The overall geometry of the title compound (Fig. 1) is comparable to that found for dehydroabietic N-methyl anilide (Rao et al., 2006) Two crystallorgraphic independent molecules exist in the asymmetric unit. In each molecule there are three six-membered rings, in which they form plannar, half-chair and chair conformations, respectively. The tricyclo phenanthrene structure of the title compound exhibited the same conformation with dehydroabietic N-methyl anilide. The two cyclohexane rings form a trans ring junction with two methyl groups in the same side of tricyclo phenanthrene structure. There are three chiral centers in each molecule, they exhibited R–, S– and R– configurations, respectively.

The crystal structure is stabilized by intermolecular O—H···O hydrogen bonds.

Related literature top

For the synthesis and uses of dehydroabietic acid, see: Halbrook & Lawrence (1966); Jia et al. (2009); Piispanen et al. (2001); Rao et al. (2006); Rao, Song & He (2008); Rao, Song, He & Jia (2008); Sepulveda et al. (2005); Wada et al. (1985).

Experimental top

The title compound wasere isolated from disproportionated rosin by recrystallization 5 times from acetone. Single crystals were grown from acetone.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme. H atoms are represented by spheres of arbitrary radius and displacement ellipsoids are drawn at the 30% probability level.
(1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl- 1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid top
Crystal data top
C20H28O2F(000) = 656
Mr = 300.42Dx = 1.099 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 11.738 (2) Åθ = 9–13°
b = 11.875 (2) ŵ = 0.07 mm1
c = 13.654 (3) ÅT = 293 K
β = 107.50 (3)°Block, white
V = 1815.1 (6) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2173 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.086
Graphite monochromatorθmax = 25.2°, θmin = 1.6°
ω/2θ scansh = 014
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
k = 014
Tmin = 0.973, Tmax = 0.986l = 1615
3592 measured reflections3 standard reflections every 200 reflections
3417 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.06P)2 + 1.6P]
where P = (Fo2 + 2Fc2)/3
3417 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.52 e Å3
Crystal data top
C20H28O2V = 1815.1 (6) Å3
Mr = 300.42Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.738 (2) ŵ = 0.07 mm1
b = 11.875 (2) ÅT = 293 K
c = 13.654 (3) Å0.40 × 0.20 × 0.20 mm
β = 107.50 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2173 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
Rint = 0.086
Tmin = 0.973, Tmax = 0.9863 standard reflections every 200 reflections
3592 measured reflections intensity decay: 1%
3417 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0773 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
3417 reflectionsΔρmin = 0.52 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7903 (4)0.0770 (5)0.5980 (5)0.111 (2)
O20.6194 (4)0.0132 (5)0.5509 (4)0.0981 (18)
H2D0.65840.04870.52060.147*
C11.0216 (7)0.7319 (9)0.7227 (6)0.105
H1A1.04730.65920.70680.158*
H1B1.08790.78320.73850.158*
H1C0.95940.75940.66460.158*
C20.9229 (7)0.8140 (7)0.8668 (6)0.094
H2A0.89720.77960.92020.141*
H2B0.85590.84930.81800.141*
H2C0.98270.86970.89610.141*
C30.9762 (7)0.7223 (7)0.8115 (5)0.089
H3A1.04710.69760.86600.107*
C40.8968 (8)0.6219 (7)0.7975 (7)0.094 (2)
C50.9072 (8)0.5624 (8)0.8875 (7)0.104 (3)
H5A0.95430.59130.94990.125*
C60.8482 (6)0.4603 (7)0.8856 (5)0.079 (2)
H6A0.85960.42060.94650.095*
C70.7739 (5)0.4168 (5)0.7964 (4)0.0580 (15)
C80.7635 (6)0.4722 (6)0.7055 (5)0.0660 (16)
C90.8238 (7)0.5731 (6)0.7076 (6)0.085 (2)
H9A0.81510.61010.64570.102*
C100.7026 (5)0.3060 (5)0.7991 (4)0.0554 (15)
C110.6944 (4)0.2442 (5)0.6962 (4)0.0463 (13)
H11A0.77710.23840.69460.056*
C120.6319 (5)0.3137 (6)0.6046 (4)0.0636 (16)
H12A0.55010.32590.60420.076*
H12B0.62990.27220.54290.076*
C130.6904 (7)0.4267 (7)0.6020 (5)0.085 (2)
H13A0.62850.48100.57040.101*
H13B0.74190.42030.55850.101*
C140.7656 (6)0.2326 (6)0.8889 (4)0.0674 (17)
H14A0.76270.26880.95180.081*
H14B0.84890.22550.89170.081*
C150.7105 (7)0.1152 (6)0.8826 (5)0.084 (2)
H15A0.75480.07140.94180.101*
H15B0.62880.12170.88440.101*
C160.7117 (6)0.0560 (6)0.7883 (6)0.081 (2)
H16A0.67430.01700.78690.097*
H16B0.79400.04340.79030.097*
C170.6479 (4)0.1187 (6)0.6895 (4)0.0549 (15)
C190.5766 (5)0.3435 (7)0.8062 (6)0.085 (2)
H19A0.52930.27800.80800.128*
H19B0.53690.38840.74730.128*
H19C0.58670.38690.86750.128*
C180.6865 (5)0.0604 (5)0.6094 (5)0.0623 (16)
C200.5112 (5)0.1113 (6)0.6643 (6)0.082 (2)
H20A0.48740.03360.66090.123*
H20B0.47410.14680.59940.123*
H20C0.48660.14870.71690.123*
O30.2917 (4)0.3532 (5)0.5604 (4)0.0990 (19)
O40.1213 (4)0.4452 (5)0.5126 (4)0.0960 (18)
H4A0.15810.48090.48060.144*
C210.4859 (7)0.2433 (8)1.2965 (6)0.098
H21A0.54080.26281.36200.148*
H21B0.47500.16311.29260.148*
H21C0.41050.27931.28870.148*
C220.6600 (6)0.2601 (9)1.2160 (6)0.107
H22A0.71190.27701.28340.160*
H22B0.68060.30681.16640.160*
H22C0.66890.18241.20040.160*
C230.5353 (6)0.2817 (7)1.2122 (5)0.085
H23A0.53250.36401.21700.102*
C240.4502 (6)0.2576 (9)1.1044 (6)0.093 (2)
C250.4036 (8)0.1542 (8)1.0763 (7)0.112 (3)
H25A0.42190.09581.12390.134*
C260.3299 (7)0.1337 (7)0.9789 (7)0.108 (3)
H26A0.30760.05990.95970.129*
C270.2870 (5)0.2205 (6)0.9074 (5)0.0695 (19)
C280.3299 (6)0.3285 (6)0.9408 (5)0.0709 (18)
C290.4126 (6)0.3443 (6)1.0387 (5)0.0747 (19)
H29A0.44190.41621.05860.090*
C300.1924 (5)0.1988 (6)0.8056 (5)0.0650 (18)
C310.2050 (5)0.2939 (5)0.7340 (4)0.0540 (14)
H31A0.28880.29040.73520.065*
C320.1918 (7)0.4097 (6)0.7754 (5)0.079 (2)
H32A0.11630.41500.79050.095*
H32B0.19270.46650.72460.095*
C330.2942 (7)0.4292 (6)0.8722 (5)0.084 (2)
H33A0.36300.45450.85290.101*
H33B0.27220.48940.91100.101*
C340.2114 (6)0.0853 (6)0.7582 (5)0.0736 (19)
H34A0.29470.07960.76090.088*
H34B0.19530.02520.80040.088*
C350.1367 (6)0.0670 (7)0.6509 (5)0.087 (2)
H35A0.05340.06310.64860.105*
H35B0.15800.00430.62660.105*
C360.1528 (6)0.1607 (7)0.5810 (5)0.078 (2)
H36A0.09860.14770.51270.094*
H36B0.23360.15710.57630.094*
C370.1309 (5)0.2781 (6)0.6151 (5)0.0650 (17)
C390.0057 (5)0.3022 (8)0.5926 (5)0.087 (2)
H39A0.04570.29130.52080.130*
H39B0.01690.37840.61120.130*
H39C0.03840.25160.63200.130*
C380.1848 (5)0.3630 (6)0.5582 (5)0.0688 (19)
C400.0688 (5)0.1971 (8)0.8262 (5)0.090 (3)
H40A0.05680.26720.85670.136*
H40B0.06680.13630.87190.136*
H40C0.00660.18680.76250.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.076 (3)0.120 (5)0.161 (5)0.044 (3)0.070 (3)0.075 (4)
O20.058 (3)0.116 (4)0.124 (4)0.022 (3)0.032 (3)0.060 (4)
C10.1050.1050.1050.0000.0320.000
C20.0940.0940.0940.0000.0280.000
C30.0890.0890.0890.0000.0270.000
C40.131 (7)0.069 (5)0.094 (6)0.045 (5)0.052 (5)0.031 (5)
C50.127 (7)0.088 (6)0.113 (7)0.054 (5)0.060 (5)0.055 (6)
C60.094 (5)0.094 (6)0.060 (4)0.027 (4)0.037 (4)0.015 (4)
C70.066 (4)0.055 (4)0.057 (4)0.007 (3)0.026 (3)0.008 (3)
C80.073 (4)0.057 (4)0.065 (4)0.003 (3)0.015 (3)0.005 (3)
C90.105 (5)0.070 (5)0.092 (5)0.007 (4)0.051 (4)0.022 (4)
C100.048 (3)0.065 (4)0.059 (4)0.000 (3)0.024 (3)0.008 (3)
C110.040 (3)0.056 (3)0.046 (3)0.002 (3)0.017 (2)0.009 (3)
C120.065 (3)0.068 (4)0.053 (3)0.008 (3)0.010 (3)0.006 (3)
C130.084 (5)0.091 (5)0.075 (5)0.004 (4)0.019 (4)0.020 (4)
C140.076 (4)0.075 (4)0.052 (3)0.009 (4)0.020 (3)0.000 (3)
C150.105 (5)0.079 (5)0.070 (4)0.018 (4)0.027 (4)0.005 (4)
C160.081 (5)0.058 (4)0.108 (6)0.008 (4)0.036 (4)0.005 (4)
C170.031 (2)0.079 (4)0.058 (3)0.006 (3)0.018 (2)0.009 (3)
C190.068 (4)0.089 (5)0.115 (6)0.003 (4)0.053 (4)0.025 (5)
C180.050 (3)0.057 (4)0.083 (4)0.001 (3)0.025 (3)0.008 (4)
C200.056 (3)0.086 (5)0.114 (6)0.020 (4)0.041 (4)0.036 (5)
O30.052 (2)0.135 (5)0.122 (4)0.028 (3)0.043 (3)0.071 (4)
O40.062 (3)0.112 (4)0.117 (4)0.016 (3)0.032 (3)0.066 (4)
C210.0980.0980.0980.0000.0300.000
C220.1070.1070.1070.0000.0320.000
C230.0850.0850.0850.0000.0260.000
C240.081 (5)0.107 (7)0.078 (5)0.006 (5)0.006 (4)0.001 (5)
C250.139 (8)0.084 (6)0.081 (5)0.014 (6)0.015 (5)0.021 (5)
C260.102 (6)0.074 (5)0.113 (7)0.022 (5)0.017 (5)0.029 (5)
C270.058 (4)0.076 (5)0.076 (4)0.010 (3)0.023 (3)0.031 (4)
C280.076 (4)0.072 (5)0.067 (4)0.016 (4)0.024 (3)0.002 (4)
C290.091 (5)0.069 (5)0.067 (4)0.008 (4)0.028 (4)0.009 (4)
C300.040 (3)0.088 (5)0.073 (4)0.002 (3)0.025 (3)0.017 (4)
C310.049 (3)0.058 (4)0.060 (3)0.014 (3)0.023 (3)0.010 (3)
C320.089 (5)0.077 (5)0.084 (5)0.020 (4)0.043 (4)0.018 (4)
C330.122 (6)0.055 (4)0.076 (5)0.017 (4)0.031 (4)0.000 (4)
C340.066 (4)0.061 (4)0.090 (5)0.011 (3)0.018 (4)0.011 (4)
C350.079 (5)0.083 (5)0.087 (5)0.027 (4)0.005 (4)0.013 (4)
C360.059 (4)0.094 (6)0.077 (4)0.011 (4)0.015 (3)0.005 (4)
C370.038 (3)0.084 (5)0.070 (4)0.005 (3)0.011 (3)0.019 (4)
C390.039 (3)0.125 (6)0.097 (5)0.010 (4)0.020 (3)0.032 (5)
C380.042 (3)0.099 (5)0.067 (4)0.007 (3)0.019 (3)0.029 (4)
C400.052 (3)0.138 (7)0.088 (4)0.011 (4)0.032 (3)0.042 (5)
Geometric parameters (Å, º) top
O1—C181.289 (7)O3—C381.252 (6)
O2—C181.281 (7)O4—C381.271 (8)
O2—H2D0.8200O4—H4A0.8200
C1—C31.469 (7)C21—C231.507 (10)
C1—H1A0.9600C21—H21A0.9600
C1—H1B0.9600C21—H21B0.9600
C1—H1C0.9600C21—H21C0.9600
C2—C31.559 (10)C22—C231.472 (7)
C2—H2A0.9600C22—H22A0.9600
C2—H2B0.9600C22—H22B0.9600
C2—H2C0.9600C22—H22C0.9600
C3—C41.490 (10)C23—C241.538 (10)
C3—H3A0.9800C23—H23A0.9800
C4—C51.391 (12)C24—C291.350 (10)
C4—C91.395 (10)C24—C251.352 (12)
C5—C61.393 (10)C25—C261.373 (11)
C5—H5A0.9300C25—H25A0.9300
C6—C71.368 (8)C26—C271.405 (9)
C6—H6A0.9300C26—H26A0.9300
C7—C81.377 (8)C27—C281.404 (10)
C7—C101.567 (9)C27—C301.518 (9)
C8—C91.388 (9)C28—C291.408 (9)
C8—C131.516 (9)C28—C331.498 (10)
C9—H9A0.9300C29—H29A0.9300
C10—C141.504 (9)C30—C311.530 (8)
C10—C111.562 (7)C30—C341.540 (10)
C10—C191.576 (7)C30—C401.558 (7)
C11—C121.494 (8)C31—C321.513 (9)
C11—C171.581 (8)C31—C371.605 (8)
C11—H11A0.9800C31—H31A0.9800
C12—C131.511 (10)C32—C331.514 (10)
C12—H12A0.9700C32—H32A0.9700
C12—H12B0.9700C32—H32B0.9700
C13—H13A0.9700C33—H33A0.9700
C13—H13B0.9700C33—H33B0.9700
C14—C151.529 (10)C34—C351.480 (9)
C14—H14A0.9700C34—H34A0.9700
C14—H14B0.9700C34—H34B0.9700
C15—C161.471 (10)C35—C361.515 (10)
C15—H15A0.9700C35—H35A0.9700
C15—H15B0.9700C35—H35B0.9700
C16—C171.524 (9)C36—C371.516 (10)
C16—H16A0.9700C36—H36A0.9700
C16—H16B0.9700C36—H36B0.9700
C17—C181.477 (8)C37—C381.522 (9)
C17—C201.540 (7)C37—C391.566 (7)
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
C20—H20A0.9600C40—H40A0.9600
C20—H20B0.9600C40—H40B0.9600
C20—H20C0.9600C40—H40C0.9600
C18—O2—H2D109.5C38—O4—H4A109.5
C3—C1—H1A109.5C23—C21—H21A109.5
C3—C1—H1B109.5C23—C21—H21B109.5
H1A—C1—H1B109.5H21A—C21—H21B109.5
C3—C1—H1C109.5C23—C21—H21C109.5
H1A—C1—H1C109.5H21A—C21—H21C109.5
H1B—C1—H1C109.5H21B—C21—H21C109.5
C3—C2—H2A109.5C23—C22—H22A109.5
C3—C2—H2B109.5C23—C22—H22B109.5
H2A—C2—H2B109.5H22A—C22—H22B109.5
C3—C2—H2C109.5C23—C22—H22C109.5
H2A—C2—H2C109.5H22A—C22—H22C109.5
H2B—C2—H2C109.5H22B—C22—H22C109.5
C1—C3—C4108.9 (7)C22—C23—C21121.9 (7)
C1—C3—C2130.1 (7)C22—C23—C24110.7 (6)
C4—C3—C2107.1 (6)C21—C23—C24112.7 (6)
C1—C3—H3A102.4C22—C23—H23A102.9
C4—C3—H3A102.4C21—C23—H23A102.9
C2—C3—H3A102.4C24—C23—H23A102.9
C5—C4—C9115.8 (7)C29—C24—C25118.7 (7)
C5—C4—C3114.1 (7)C29—C24—C23118.8 (8)
C9—C4—C3129.8 (7)C25—C24—C23122.1 (8)
C4—C5—C6121.0 (7)C24—C25—C26121.3 (8)
C4—C5—H5A119.5C24—C25—H25A119.4
C6—C5—H5A119.5C26—C25—H25A119.4
C7—C6—C5121.7 (7)C25—C26—C27122.3 (8)
C7—C6—H6A119.2C25—C26—H26A118.9
C5—C6—H6A119.2C27—C26—H26A118.9
C6—C7—C8118.9 (6)C28—C27—C26115.2 (6)
C6—C7—C10119.9 (6)C28—C27—C30123.0 (6)
C8—C7—C10121.3 (5)C26—C27—C30121.5 (7)
C7—C8—C9119.2 (6)C27—C28—C29120.5 (6)
C7—C8—C13122.8 (6)C27—C28—C33121.4 (6)
C9—C8—C13118.0 (6)C29—C28—C33118.0 (7)
C8—C9—C4123.4 (7)C24—C29—C28121.6 (7)
C8—C9—H9A118.3C24—C29—H29A119.2
C4—C9—H9A118.3C28—C29—H29A119.2
C14—C10—C11110.1 (5)C27—C30—C31105.9 (5)
C14—C10—C7111.7 (5)C27—C30—C34112.0 (5)
C11—C10—C7105.2 (4)C31—C30—C34108.9 (5)
C14—C10—C19110.7 (5)C27—C30—C40107.6 (5)
C11—C10—C19112.5 (5)C31—C30—C40113.5 (5)
C7—C10—C19106.4 (5)C34—C30—C40108.9 (6)
C12—C11—C10112.0 (5)C32—C31—C30113.1 (5)
C12—C11—C17113.5 (4)C32—C31—C37113.5 (5)
C10—C11—C17114.9 (4)C30—C31—C37115.6 (5)
C12—C11—H11A105.1C32—C31—H31A104.4
C10—C11—H11A105.1C30—C31—H31A104.4
C17—C11—H11A105.1C37—C31—H31A104.4
C11—C12—C13113.5 (5)C31—C32—C33108.8 (6)
C11—C12—H12A108.9C31—C32—H32A109.9
C13—C12—H12A108.9C33—C32—H32A109.9
C11—C12—H12B108.9C31—C32—H32B109.9
C13—C12—H12B108.9C33—C32—H32B109.9
H12A—C12—H12B107.7H32A—C32—H32B108.3
C12—C13—C8115.4 (6)C28—C33—C32115.0 (7)
C12—C13—H13A108.4C28—C33—H33A108.5
C8—C13—H13A108.4C32—C33—H33A108.5
C12—C13—H13B108.4C28—C33—H33B108.5
C8—C13—H13B108.4C32—C33—H33B108.5
H13A—C13—H13B107.5H33A—C33—H33B107.5
C10—C14—C15112.8 (5)C35—C34—C30115.2 (6)
C10—C14—H14A109.0C35—C34—H34A108.5
C15—C14—H14A109.0C30—C34—H34A108.5
C10—C14—H14B109.0C35—C34—H34B108.5
C15—C14—H14B109.0C30—C34—H34B108.5
H14A—C14—H14B107.8H34A—C34—H34B107.5
C16—C15—C14111.7 (6)C34—C35—C36111.6 (6)
C16—C15—H15A109.3C34—C35—H35A109.3
C14—C15—H15A109.3C36—C35—H35A109.3
C16—C15—H15B109.3C34—C35—H35B109.3
C14—C15—H15B109.3C36—C35—H35B109.3
H15A—C15—H15B107.9H35A—C35—H35B108.0
C15—C16—C17114.2 (6)C35—C36—C37114.6 (6)
C15—C16—H16A108.7C35—C36—H36A108.6
C17—C16—H16A108.7C37—C36—H36A108.6
C15—C16—H16B108.7C35—C36—H36B108.6
C17—C16—H16B108.7C37—C36—H36B108.6
H16A—C16—H16B107.6H36A—C36—H36B107.6
C18—C17—C16104.4 (5)C36—C37—C38108.5 (5)
C18—C17—C20109.8 (5)C36—C37—C39111.5 (6)
C16—C17—C20111.8 (5)C38—C37—C39109.7 (5)
C18—C17—C11107.9 (4)C36—C37—C31109.2 (5)
C16—C17—C11109.9 (5)C38—C37—C31104.9 (5)
C20—C17—C11112.7 (5)C39—C37—C31112.9 (5)
C10—C19—H19A109.5C37—C39—H39A109.5
C10—C19—H19B109.5C37—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C10—C19—H19C109.5C37—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
O2—C18—O1117.1 (6)O3—C38—O4121.3 (6)
O2—C18—C17120.9 (5)O3—C38—C37119.6 (6)
O1—C18—C17121.9 (6)O4—C38—C37119.1 (5)
C17—C20—H20A109.5C30—C40—H40A109.5
C17—C20—H20B109.5C30—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
C17—C20—H20C109.5C30—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···O3i0.821.822.621 (8)165
O4—H4A···O1ii0.821.792.598 (8)168
C11—H11A···O10.982.362.813 (8)108
C31—H31A···O30.982.512.933 (8)106
C36—H36B···O30.972.452.870 (10)105
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H28O2
Mr300.42
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.738 (2), 11.875 (2), 13.654 (3)
β (°) 107.50 (3)
V3)1815.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(XCAD4; Harms & Wocadlo, 1995)
Tmin, Tmax0.973, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3592, 3417, 2173
Rint0.086
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.182, 1.00
No. of reflections3417
No. of parameters361
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.52

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···O3i0.82001.82002.621 (8)165.00
O4—H4A···O1ii0.82001.79002.598 (8)168.00
C11—H11A···O10.98002.36002.813 (8)108.00
C31—H31A···O30.98002.51002.933 (8)106.00
C36—H36B···O30.97002.45002.870 (10)105.00
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 30800871) and the Fundamental Research Foundation of the Central Commonwealth Institute of the Chinese Academy of Forestry (grant No. CAFYBB2008021),

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHalbrook, N. J. & Lawrence, R. V. (1966). J. Org. Chem. 31, 4246–4247.  CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJia, W. H., Rao, X. P., Song, Z. Q. & Shang, S. B. (2009). J. Surf. Det. 12, 261–267. .  Web of Science CrossRef CAS Google Scholar
First citationPiispanen, P. S., Hedman, B. & Norin, T. (2001).J. Surf. Det. 5, 165–168..  Web of Science CrossRef Google Scholar
First citationRao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512–516.  Web of Science CrossRef CAS Google Scholar
First citationRao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56, 1575–1578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, X.-P., Song, Z.-Q., Radbil, B. & Radbil, A. (2006). Acta Cryst. E62, o5301–o5302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharmacol. Res. 52, 429–437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWada, H., Kodato, S., Kawamori, M., Morikawa, T., Nakai, H., Takeda, M., Saito, S., Onoda, Y. & Tamaki, H. (1985). Chem. Pharm. Bull. (Tokyo), 33, 1472–1487.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds