organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2303-o2304

Adeninium 3-carb­oxy­anilinium bis­­(perchlorate) trihydrate

aLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr

(Received 25 August 2009; accepted 26 August 2009; online 5 September 2009)

In the title salt, C5H6N5+·C7H8NO2+·2ClO4·3H2O, the 3-carboxy­anilinium and adeninium cations are monoprotonated at the amino group and at a pyrimidine N atom respectively. In the crystal, the components are involved in extensive three-dimensional hydrogen-bonding networks composed of O—H⋯O, N—H⋯O, O—H⋯N, N—H⋯N and C—H⋯O inter­actions. Bifurcated hydrogen bonds are observed between perchlorate O atoms and adeninium cations.

Related literature

For hydrogen bonds in hybrid compounds, see: Baker et al. (1992[Baker, L.-J., Bowmaker, G. A., Healy, P. C., Skelton, B. W. & White, A. H. (1992). J. Chem. Soc. Dalton Trans. pp. 989-998.]); Richards et al. (1972[Richards, M. F., Wyckoff, H. W., Carlson, W. D., Allewell, N. M., Lee, M. & Mitsui, Y. (1972). Cold Spring Harb. Symp. Quant. Biol. 36, 25-43.]). Hydrogen-bonding patterns involving amino­pyrimidine and carboxyl­ates have been observed in drug-receptor inter­actions, protein-nucleic acid inter­actions and supra­molecular architectures, see: Perutz & Ten Eyck (1972[Perutz, M. F. & Ten Eyck, L. F. (1972). Cold Spring Harb. Symp. Quant. Biol. 36, 295-310.]). For their applications in drug design and the crystal engineering of pharmaceuticals, see: Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). For the use of amino­pyrimidine derivatives as anti­folate drugs, see: Stanley et al. (2005[Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201-7210.]); Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533-536.]). For studies of cation–anion hydrogen-bonding in organic salts of carboxylic acids, see: Bendjeddou et al. (2003[Bendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574-o576.], 2009[Bendjeddou, L., Cherouana, A., Hadjadj, N., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o1770-o1771.]); Cherouana et al. (2003[Cherouana, A., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o1790-o1792.]); Moussa Slimane et al. (2009[Moussa Slimane, N., Cherouana, A., Bendjeddou, L., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2180-o2181.]). For the dependence of bond lengths and angles in adeninium cations on the degree of protonation, see: Hingerty et al. (1981[Hingerty, B. E., Einstein, J. R. & Wei, C. H. (1981). Acta Cryst. B37, 140-147.]); Langer & Huml (1978[Langer, V. & Huml, K. (1978). Acta Cryst. B34, 1157-1163.]). For bond angles in unprotonated adenine, see: Voet & Rich (1970[Voet, D. & Rich, A. (1970). Prog. Nucleic Acid Res. Mol. Biol. 10, 183-265.]). For the hydrogen-bonding pattern in adeninium perchlorate adenine dihydrate, see: Zeleňák et al. (2004[Zeleňák, V., Vargová, Z. & Císařová, I. (2004). Acta Cryst. E60, o742-o744.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N5+·C7H8NO2+·2ClO4·3H2O

  • Mr = 527.24

  • Triclinic, [P \overline 1]

  • a = 8.95610 (10) Å

  • b = 10.5563 (2) Å

  • c = 11.7362 (2) Å

  • α = 71.431 (7)°

  • β = 85.800 (5)°

  • γ = 78.192 (4)°

  • V = 1029.52 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 120 K

  • 0.16 × 0.1 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 55756 measured reflections

  • 6914 independent reflections

  • 5822 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.098

  • S = 0.97

  • 6914 reflections

  • 316 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O2W 0.86 2.03 2.8135 (13) 151
N1A—H1A⋯O6 0.86 2.54 3.0145 (14) 115
O1M—H1M⋯N7Ai 0.82 1.86 2.6676 (14) 167
N1—H1N⋯O1Wii 0.89 1.86 2.7381 (15) 171
N1—H2N⋯O2W 0.89 1.92 2.8111 (14) 174
N1—H3N⋯O7iii 0.89 2.00 2.8539 (14) 162
N9A—H9A⋯N3Aiv 0.86 2.07 2.9013 (14) 163
O3W—H13W⋯O1v 0.868 (15) 2.297 (14) 3.0378 (18) 143.5 (13)
O3W—H13W⋯O1Miii 0.868 (15) 2.548 (16) 3.0127 (14) 114.5 (11)
O1W—H21W⋯O4ii 0.843 (15) 2.149 (13) 2.9329 (14) 154.6 (18)
O1W—H21W⋯O7vi 0.843 (15) 2.49 (2) 3.0553 (14) 124.9 (14)
O2W—H22W⋯O3 0.841 (14) 2.466 (15) 2.9164 (16) 114.5 (13)
O2W—H22W⋯O3ii 0.841 (14) 2.161 (15) 2.9627 (16) 159.3 (16)
O3W—H23W⋯O6 0.869 (17) 2.062 (17) 2.9199 (14) 169.5 (16)
N6A—H61⋯O1W 0.86 2.46 2.9458 (15) 116
N6A—H61⋯O8vi 0.86 2.33 3.0126 (15) 137
N6A—H62⋯O2Mvii 0.86 1.97 2.8187 (14) 167
C2A—H2A⋯O6 0.93 2.50 3.0047 (15) 115
C2A—H2A⋯O7iii 0.93 2.48 3.2166 (15) 136
C5M—H5M⋯O1ii 0.93 2.52 3.3883 (17) 156
C8A—H8A⋯O5viii 0.93 2.58 3.2881 (15) 133
C8A—H8A⋯O3Wix 0.93 2.42 3.1994 (16) 142
Symmetry codes: (i) x-1, y, z+1; (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) -x, -y+1, -z; (v) x, y+1, z; (vi) -x+1, -y+1, -z+1; (vii) x+1, y, z-1; (viii) x, y, z-1; (ix) -x+1, -y+1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST97 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POVRay (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ .]).

Supporting information


Comment top

Hydrogen bonds of hybrid compounds are of interest because of their widespread biological occurrence (Baker et al., 1992), Richards et al., 1972). Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug-receptor interactions, protein-nucleic acid interactions and supramolecular architectures (Perutz et al., 1972). Studies of such interactions are also of current interest because of their applications in drug design and the crystal engineering of pharmaceuticals (Desiraju et al., 1989). Pyrimidine and aminopyrimidine derivatives are biologically important as they occur in nature as components of nucleic acid. Some aminopyrimidine derivatives are used as antifolate drugs (Stanley et al., 2005; Hunt et al., 1980). The supramolecular networks become especially interesting when the cation and anion can participate in hydrogen-bonding. In this regard previous studies have been concerned with organic salts of carboxylic acids (Bendjeddou et al., 2003; 2009; Cherouana et al., 2003; Moussa Slimane et al., 2009)

Our investigations have focused on the use of perchloric, amino acids and/or nitrogen base acid as a structural building in the synthesis of hydrogen-bonded patterns inorganic-organic high-dimensional structure.

The asymmetric unit of (I) consists of two different monoprotonated adeninium and m-carboxyanilinium cations, two perchlorate anions and three water molecules (Fig. 1). A proton transfer from the perchloric acid to atom N1A of the imidazolyl moiety of adenine base and N1 of m-carboxyalinine acid resulted in the formation of salts. Adeninium cations can be either mono- or diprotonated and the bond lengths and angles are dependent on the degree of protonation (Hingerty et al., 1981; Langer & Huml, 1978). This form contains three basic N atoms, the most basic site is N1, which accepts the first proton, and the next protonation occurs at N7 and then at N3. In the title compound (I), only atom N1 is protonated. This is evident from the increase in the ring angle at the site of protonation, namely N1. The internal angles at N1 is increased from the reported values of 119.8 in unprotonated adenine (Voet & Rich, 1970). The bond lengths and angles of m-carboxyanilinium cation correspond to those expected for the atom types and the type of hybridization (Allen et al., 1987). All bond lengths and angles shows that the two perchlorate anions are tetrahedral.

The title compound is built on the basis of alternating cations and anions chains, the water molecules are sandwiched between them (Fig. 2). In (I), the cationic entities are connected into a two-dimensional hydrogen-bonded network via O—H..N, N—H···N and N—H···O hydrogen bonds, thus generating double layers, the junction between them is ensured by a N1A—H1A···O2w and N1—H2N···O2w hydrogen bonds via a water molecule (H2O(2)), forming a centrosymmetric rings a long [100] axe which can be described by the graph-set motif of R63(34) (Bernstein et al., 1995) (Fig. 3a).

The carbonyl O and the carboxyl H atoms participates in hydrogen bonding with a neighbouring adeninium cation through an N—H···O and O—H···N hydrogen bond. The combination of these two hydrogen bonds generates a noncentrosymmetric fused rings which can be described by the graph-set motif of R22(9). The adeninium cations are linked by two independents N—H···N hydrogen bonds (Table 3), atom N9A (x, y, z) acts as a hydrogen-bond donor to atom N3A at (-x, 1 - y,-z), so generating a Centrosymmetric ring R22(8). A similar pattern was also observed in the crystal structure of adeninium perchlorate adenine dihydrate (Zeleňák, et al., 2004) (Fig. 3 b).

The water molecules plays a pivotal role, they bridges the perchlorate anions as shown in Fig.4, so forming an alternating of R22(4) and an R44(12) rings running parallel to the [100] direction at a = 1/2 & 0 respectively.

The H atoms respectively from protonated atom N1 and atom C2A are involved in bifurcated hydrogen bonding with perchlorate atom O6 to form a five-membered hydrogen-bonded R21(5) ring into a two-dimensional network (Fig.5).

Related literature top

For hydrogen bonds in hybrid compounds, see: Baker et al. (1992); Richards et al. (1972). Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug-receptor interactions, protein-nucleic acid interactions and supramolecular architectures, see: Perutz & Ten Eyck (1972). Studies of such interactions are also of current interest because of their applications in drug design and the crystal engineering of pharmaceuticals, sse: Desiraju (1989). For the use of aminopyrimidine derivatives as antifolate drugs, see: Stanley et al. (2005); Hunt et al. (1980). For studies of cation–anion hydrogen-bonding in organic salts of carboxylic acids, see: Bendjeddou et al. (2003, 2009); Cherouana et al. (2003); Moussa Slimane et al. (2009). For the dependence of bond lengths and angles in adeninium cations on the degree of protonation, see: Hingerty et al. (1981); Langer & Huml (1978). For bond angles in unprotonated adenine, see: Voet & Rich (1970). For the hydrogen-bonding pattern in adeninium perchlorate adenine dihydrate, see: Zeleňák et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen et al. (1987).

Experimental top

The compound was obtained as colourless crystals, after few days, by slow evaporation from an aqueous solution of adenine, m-carboxyphenyl ammonium and perchloric acid in stoechiometric ratio of 1:1:1.

Refinement top

H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93 Å, O—H = 0.82 Å, N—H = 0.89 Å and 0.86 Å for ammonium and aromatic H atoms, respectively, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O). The H atoms of the water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit (dashed lines). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for the title compound, viewed along the a axis, showing the formation of layers.
[Figure 3] Fig. 3. View of the two-dimensional hydrogen-bonded network parallel to the (001) and (101) planes of (I), showing the aggregation of R22(8), R22(9) and R42(34) hydrogen-bonding motifs. Atoms marked with a star (*), a hash symbol (#), an ampersand (&) or an at sign (@), are at the symmetry positions (-1 + x, y, 1 + z), (-1 + x, y, z), (x, 1 - y, z), (1 + x, y - 1 + z), respectively.
[Figure 4] Fig. 4. Part of the crystal structure, showing the aggregation of R44(12) and R22(4) motifs via O—H···O hydrogen bonds. Atoms marked with a hash symbol (#), an ampersand (&), dollar sign ($), or a star (*) are at the symmetry positions (-1 + x, y, z), (1 - x, -y, 1 - z), (x, -1 + y, z), (-x, -y, 1 - z), respectively.
[Figure 5] Fig. 5. Bifurcate hydrogen bonding
Adeninium 3-carboxyanilinium bis(perchlorate) trihydrate top
Crystal data top
C5H6N5+·C7H8NO2+·2ClO4·3H2OZ = 2
Mr = 527.24F(000) = 544
Triclinic, P1Dx = 1.701 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9561 (1) ÅCell parameters from 55756 reflections
b = 10.5563 (2) Åθ = 1.0–31.6°
c = 11.7362 (2) ŵ = 0.40 mm1
α = 71.431 (7)°T = 120 K
β = 85.800 (5)°Needle, brown
γ = 78.192 (4)°0.16 × 0.1 × 0.08 mm
V = 1029.52 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
5822 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 31.6°, θmin = 2.8°
ω scansh = 013
55756 measured reflectionsk = 1415
6914 independent reflectionsl = 1717
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.328P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.70 e Å3
6914 reflectionsΔρmin = 0.64 e Å3
316 parameters
Crystal data top
C5H6N5+·C7H8NO2+·2ClO4·3H2Oγ = 78.192 (4)°
Mr = 527.24V = 1029.52 (5) Å3
Triclinic, P1Z = 2
a = 8.9561 (1) ÅMo Kα radiation
b = 10.5563 (2) ŵ = 0.40 mm1
c = 11.7362 (2) ÅT = 120 K
α = 71.431 (7)°0.16 × 0.1 × 0.08 mm
β = 85.800 (5)°
Data collection top
Nonius KappaCCD
diffractometer
5822 reflections with I > 2σ(I)
55756 measured reflectionsRint = 0.028
6914 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0329 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.70 e Å3
6914 reflectionsΔρmin = 0.64 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.19523 (3)0.56122 (3)0.55586 (2)0.01535 (6)
Cl10.26532 (3)0.01925 (3)0.32829 (3)0.01919 (7)
O40.18456 (11)0.09092 (10)0.38018 (9)0.02546 (19)
O80.32466 (10)0.59734 (10)0.59496 (9)0.02321 (18)
O20.15769 (12)0.14560 (10)0.28846 (11)0.0331 (2)
O50.16150 (11)0.43814 (9)0.64068 (9)0.0262 (2)
O60.22752 (11)0.54327 (10)0.43911 (8)0.0256 (2)
O1W0.84304 (11)0.11571 (10)0.36340 (9)0.02322 (18)
H11W0.9191 (16)0.1428 (19)0.3222 (14)0.035*
H21W0.848 (2)0.1307 (19)0.4293 (11)0.035*
O2M0.17505 (10)0.23783 (10)1.07286 (8)0.02331 (18)
O30.36504 (13)0.02378 (12)0.41750 (10)0.0337 (2)
O3W0.46761 (11)0.68985 (11)0.31943 (9)0.02467 (19)
H23W0.4054 (18)0.6368 (16)0.3575 (16)0.037*
H13W0.4085 (18)0.7627 (12)0.2763 (15)0.037*
O2W0.41376 (10)0.23763 (9)0.51016 (8)0.01987 (17)
H22W0.4707 (17)0.1627 (12)0.5132 (16)0.03*
H12W0.4495 (19)0.2689 (16)0.5578 (14)0.03*
O70.06388 (10)0.66963 (9)0.54746 (8)0.02176 (18)
O1M0.27521 (10)0.26982 (10)0.89398 (8)0.02123 (18)
H1M0.35430.29540.92690.032*
O10.35415 (12)0.00416 (13)0.22739 (10)0.0358 (3)
N3A0.11767 (11)0.45851 (10)0.13693 (9)0.01576 (17)
N9A0.19753 (11)0.44133 (10)0.06160 (8)0.01525 (17)
H9A0.11220.47360.09890.018*
N1A0.32637 (11)0.37745 (10)0.27036 (8)0.01595 (18)
H1A0.3550.36410.34230.019*
N7A0.44549 (11)0.35292 (10)0.02915 (9)0.01645 (18)
N10.15132 (11)0.14796 (10)0.62650 (9)0.01761 (18)
H3N0.07190.20650.58640.026*
H1N0.15210.06560.62110.026*
H2N0.23730.17510.59510.026*
N6A0.57570 (11)0.29041 (11)0.22322 (9)0.0204 (2)
H610.60250.27660.29570.024*
H620.6420.26950.17210.024*
C4A0.22236 (12)0.42565 (11)0.05563 (10)0.01409 (19)
C2M0.01192 (12)0.18475 (11)0.91804 (10)0.01548 (19)
C6M0.25407 (13)0.08172 (13)0.94549 (11)0.0204 (2)
H6M0.33890.04530.99490.025*
C5M0.26698 (13)0.08683 (12)0.82521 (11)0.0194 (2)
H5M0.35960.05350.79390.023*
C5A0.37585 (12)0.37129 (11)0.07482 (10)0.01494 (19)
C1M0.16129 (13)0.23298 (12)0.96985 (10)0.0169 (2)
C4M0.13915 (13)0.14247 (11)0.75291 (10)0.01572 (19)
C6A0.43380 (13)0.34339 (11)0.19055 (10)0.0158 (2)
C3M0.00021 (13)0.19153 (11)0.79698 (10)0.01574 (19)
H3M0.08460.22840.74710.019*
C2A0.17701 (13)0.43122 (12)0.24266 (10)0.0168 (2)
H2A0.11230.450.30340.02*
C7M0.11526 (13)0.13073 (12)0.99212 (11)0.0182 (2)
H7M0.10730.12751.07240.022*
C8A0.33410 (13)0.39600 (12)0.10839 (10)0.0164 (2)
H8A0.34750.39540.18760.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.01578 (12)0.01495 (12)0.01556 (12)0.00305 (9)0.00132 (8)0.00477 (9)
Cl10.01813 (12)0.01781 (13)0.02080 (13)0.00179 (9)0.00226 (9)0.00546 (10)
O40.0315 (5)0.0199 (4)0.0263 (5)0.0088 (4)0.0028 (4)0.0060 (4)
O80.0197 (4)0.0283 (5)0.0253 (4)0.0077 (3)0.0044 (3)0.0105 (4)
O20.0240 (5)0.0175 (4)0.0522 (7)0.0008 (4)0.0025 (4)0.0057 (4)
O50.0276 (5)0.0169 (4)0.0291 (5)0.0063 (3)0.0021 (4)0.0013 (3)
O60.0291 (5)0.0330 (5)0.0210 (4)0.0087 (4)0.0028 (4)0.0161 (4)
O1W0.0230 (4)0.0241 (4)0.0248 (4)0.0031 (3)0.0008 (3)0.0114 (4)
O2M0.0197 (4)0.0324 (5)0.0181 (4)0.0018 (4)0.0001 (3)0.0103 (4)
O30.0338 (5)0.0363 (6)0.0382 (6)0.0078 (4)0.0126 (4)0.0182 (5)
O3W0.0210 (4)0.0292 (5)0.0232 (4)0.0015 (4)0.0013 (3)0.0093 (4)
O2W0.0203 (4)0.0218 (4)0.0183 (4)0.0027 (3)0.0025 (3)0.0077 (3)
O70.0185 (4)0.0191 (4)0.0241 (4)0.0018 (3)0.0016 (3)0.0047 (3)
O1M0.0134 (4)0.0311 (5)0.0186 (4)0.0004 (3)0.0002 (3)0.0100 (4)
O10.0268 (5)0.0494 (7)0.0241 (5)0.0021 (5)0.0032 (4)0.0080 (5)
N3A0.0147 (4)0.0177 (4)0.0152 (4)0.0025 (3)0.0004 (3)0.0061 (3)
N9A0.0131 (4)0.0185 (4)0.0136 (4)0.0010 (3)0.0019 (3)0.0051 (3)
N1A0.0154 (4)0.0217 (5)0.0120 (4)0.0044 (3)0.0003 (3)0.0065 (3)
N7A0.0143 (4)0.0204 (4)0.0146 (4)0.0018 (3)0.0006 (3)0.0066 (3)
N10.0159 (4)0.0186 (4)0.0170 (4)0.0014 (3)0.0008 (3)0.0051 (4)
N6A0.0153 (4)0.0295 (5)0.0152 (4)0.0007 (4)0.0030 (3)0.0069 (4)
C4A0.0145 (4)0.0140 (4)0.0136 (4)0.0024 (4)0.0011 (4)0.0041 (4)
C2M0.0147 (5)0.0150 (5)0.0164 (5)0.0032 (4)0.0001 (4)0.0044 (4)
C6M0.0160 (5)0.0218 (5)0.0207 (5)0.0010 (4)0.0038 (4)0.0036 (4)
C5M0.0149 (5)0.0196 (5)0.0213 (5)0.0011 (4)0.0001 (4)0.0044 (4)
C5A0.0139 (4)0.0170 (5)0.0141 (5)0.0027 (4)0.0008 (4)0.0051 (4)
C1M0.0162 (5)0.0166 (5)0.0176 (5)0.0028 (4)0.0005 (4)0.0047 (4)
C4M0.0154 (5)0.0152 (5)0.0158 (5)0.0030 (4)0.0002 (4)0.0038 (4)
C6A0.0161 (5)0.0167 (5)0.0149 (5)0.0038 (4)0.0004 (4)0.0050 (4)
C3M0.0141 (4)0.0151 (5)0.0174 (5)0.0021 (4)0.0009 (4)0.0044 (4)
C2A0.0152 (5)0.0194 (5)0.0162 (5)0.0034 (4)0.0005 (4)0.0064 (4)
C7M0.0176 (5)0.0187 (5)0.0171 (5)0.0032 (4)0.0021 (4)0.0038 (4)
C8A0.0161 (5)0.0188 (5)0.0143 (5)0.0023 (4)0.0002 (4)0.0059 (4)
Geometric parameters (Å, º) top
Cl2—O51.4363 (9)N7A—C8A1.3220 (14)
Cl2—O81.4387 (9)N7A—C5A1.3804 (14)
Cl2—O61.4429 (9)N1—C4M1.4630 (15)
Cl2—O71.4483 (9)N1—H3N0.89
Cl1—O11.4367 (11)N1—H1N0.89
Cl1—O21.4386 (10)N1—H2N0.89
Cl1—O41.4405 (10)N6A—C6A1.3110 (15)
Cl1—O31.4432 (10)N6A—H610.86
O1W—H11W0.851 (9)N6A—H620.86
O1W—H21W0.843 (9)C4A—C5A1.3819 (15)
O2M—C1M1.2225 (14)C2M—C7M1.3936 (16)
O3W—H23W0.869 (9)C2M—C3M1.3969 (16)
O3W—H13W0.868 (9)C2M—C1M1.4893 (16)
O2W—H22W0.840 (9)C6M—C7M1.3894 (17)
O2W—H12W0.843 (9)C6M—C5M1.3925 (17)
O1M—C1M1.3173 (14)C6M—H6M0.93
O1M—H1M0.82C5M—C4M1.3876 (16)
N3A—C2A1.3082 (14)C5M—H5M0.93
N3A—C4A1.3625 (14)C5A—C6A1.4096 (15)
N9A—C4A1.3618 (14)C4M—C3M1.3802 (15)
N9A—C8A1.3623 (14)C3M—H3M0.93
N9A—H9A0.86C2A—H2A0.93
N1A—C2A1.3612 (14)C7M—H7M0.93
N1A—C6A1.3687 (14)C8A—H8A0.93
N1A—H1A0.86
O5—Cl2—O8110.25 (6)N3A—C4A—C5A127.04 (10)
O5—Cl2—O6110.09 (6)C7M—C2M—C3M120.44 (10)
O8—Cl2—O6109.38 (6)C7M—C2M—C1M119.27 (10)
O5—Cl2—O7108.72 (6)C3M—C2M—C1M120.28 (10)
O8—Cl2—O7109.21 (6)C7M—C6M—C5M120.43 (11)
O6—Cl2—O7109.17 (6)C7M—C6M—H6M119.8
O1—Cl1—O2109.41 (7)C5M—C6M—H6M119.8
O1—Cl1—O4108.98 (7)C4M—C5M—C6M118.80 (11)
O2—Cl1—O4109.54 (6)C4M—C5M—H5M120.6
O1—Cl1—O3109.60 (7)C6M—C5M—H5M120.6
O2—Cl1—O3110.26 (7)C4A—C5A—N7A110.32 (9)
O4—Cl1—O3109.03 (6)C4A—C5A—C6A118.20 (10)
H11W—O1W—H21W105.5 (15)N7A—C5A—C6A131.47 (10)
H23W—O3W—H13W104.3 (14)O2M—C1M—O1M123.91 (11)
H22W—O2W—H12W107.2 (14)O2M—C1M—C2M122.61 (11)
C1M—O1M—H1M109.5O1M—C1M—C2M113.47 (10)
C2A—N3A—C4A112.44 (10)C3M—C4M—C5M121.97 (11)
C4A—N9A—C8A106.73 (9)C3M—C4M—N1118.77 (10)
C4A—N9A—H9A126.6C5M—C4M—N1119.25 (10)
C8A—N9A—H9A126.6N6A—C6A—N1A120.99 (10)
C2A—N1A—C6A123.92 (10)N6A—C6A—C5A125.47 (10)
C2A—N1A—H1A118N1A—C6A—C5A113.54 (10)
C6A—N1A—H1A118C4M—C3M—C2M118.65 (10)
C8A—N7A—C5A104.25 (9)C4M—C3M—H3M120.7
C4M—N1—H3N109.5C2M—C3M—H3M120.7
C4M—N1—H1N109.5N3A—C2A—N1A124.84 (10)
H3N—N1—H1N109.5N3A—C2A—H2A117.6
C4M—N1—H2N109.5N1A—C2A—H2A117.6
H3N—N1—H2N109.5C6M—C7M—C2M119.70 (11)
H1N—N1—H2N109.5C6M—C7M—H7M120.2
C6A—N6A—H61120C2M—C7M—H7M120.2
C6A—N6A—H62120N7A—C8A—N9A112.76 (10)
H61—N6A—H62120N7A—C8A—H8A123.6
N9A—C4A—N3A127.02 (10)N9A—C8A—H8A123.6
N9A—C4A—C5A105.94 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2W0.862.032.8135 (13)151
N1A—H1A···O60.862.543.0145 (14)115
O1M—H1M···N7Ai0.821.862.6676 (14)167
N1—H1N···O1Wii0.891.862.7381 (15)171
N1—H2N···O2W0.891.922.8111 (14)174
N1—H3N···O7iii0.892.002.8539 (14)162
N9A—H9A···N3Aiv0.862.072.9013 (14)163
O3W—H13W···O1v0.87 (2)2.30 (1)3.0378 (18)144 (1)
O3W—H13W···O1Miii0.87 (2)2.55 (2)3.0127 (14)115 (1)
O1W—H21W···O4ii0.84 (2)2.15 (1)2.9329 (14)155 (2)
O1W—H21W···O7vi0.84 (2)2.49 (2)3.0553 (14)125 (1)
O2W—H22W···O30.84 (1)2.47 (2)2.9164 (16)115 (1)
O2W—H22W···O3ii0.84 (1)2.16 (2)2.9627 (16)159 (2)
O3W—H23W···O60.87 (2)2.06 (2)2.9199 (14)170 (2)
N6A—H61···O1W0.862.462.9458 (15)116
N6A—H61···O8vi0.862.333.0126 (15)137
N6A—H62···O2Mvii0.861.972.8187 (14)167
C2A—H2A···O60.932.503.0047 (15)115
C2A—H2A···O7iii0.932.483.2166 (15)136
C5M—H5M···O1ii0.932.523.3883 (17)156
C8A—H8A···O5viii0.932.583.2881 (15)133
C8A—H8A···O3Wix0.932.423.1994 (16)142
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y, z1; (viii) x, y, z1; (ix) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H6N5+·C7H8NO2+·2ClO4·3H2O
Mr527.24
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.9561 (1), 10.5563 (2), 11.7362 (2)
α, β, γ (°)71.431 (7), 85.800 (5), 78.192 (4)
V3)1029.52 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.16 × 0.1 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
55756, 6914, 5822
Rint0.028
(sin θ/λ)max1)0.737
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.098, 0.97
No. of reflections6914
No. of parameters316
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.64

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2W0.86002.03002.8135 (13)151.00
N1A—H1A···O60.86002.54003.0145 (14)115.00
O1M—H1M···N7Ai0.82001.86002.6676 (14)167.00
N1—H1N···O1Wii0.89001.86002.7381 (15)171.00
N1—H2N···O2W0.89001.92002.8111 (14)174.00
N1—H3N···O7iii0.89002.00002.8539 (14)162.00
N9A—H9A···N3Aiv0.86002.07002.9013 (14)163.00
O3W—H13W···O1v0.868 (15)2.297 (14)3.0378 (18)143.5 (13)
O3W—H13W···O1Miii0.868 (15)2.548 (16)3.0127 (14)114.5 (11)
O1W—H21W···O4ii0.843 (15)2.149 (13)2.9329 (14)154.6 (18)
O1W—H21W···O7vi0.843 (15)2.49 (2)3.0553 (14)124.9 (14)
O2W—H22W···O30.841 (14)2.466 (15)2.9164 (16)114.5 (13)
O2W—H22W···O3ii0.841 (14)2.161 (15)2.9627 (16)159.3 (16)
O3W—H23W···O60.869 (17)2.062 (17)2.9199 (14)169.5 (16)
N6A—H61···O1W0.86002.46002.9458 (15)116.00
N6A—H61···O8vi0.86002.33003.0126 (15)137.00
N6A—H62···O2Mvii0.86001.97002.8187 (14)167.00
C2A—H2A···O60.93002.50003.0047 (15)115.00
C2A—H2A···O7iii0.93002.48003.2166 (15)136.00
C5M—H5M···O1ii0.93002.52003.3883 (17)156.00
C8A—H8A···O5viii0.93002.58003.2881 (15)133.00
C8A—H8A···O3Wix0.93002.42003.1994 (16)142.00
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y, z1; (viii) x, y, z1; (ix) x+1, y+1, z.
 

Acknowledgements

Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1 is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaker, L.-J., Bowmaker, G. A., Healy, P. C., Skelton, B. W. & White, A. H. (1992). J. Chem. Soc. Dalton Trans. pp. 989–998.  CSD CrossRef Web of Science Google Scholar
First citationBendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574–o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBendjeddou, L., Cherouana, A., Hadjadj, N., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o1770–o1771.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationCherouana, A., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o1790–o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHingerty, B. E., Einstein, J. R. & Wei, C. H. (1981). Acta Cryst. B37, 140–147.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536.  CAS PubMed Web of Science Google Scholar
First citationLanger, V. & Huml, K. (1978). Acta Cryst. B34, 1157–1163.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoussa Slimane, N., Cherouana, A., Bendjeddou, L., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2180–o2181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/Google Scholar
First citationPerutz, M. F. & Ten Eyck, L. F. (1972). Cold Spring Harb. Symp. Quant. Biol. 36, 295–310.  CrossRef CAS PubMed Google Scholar
First citationRichards, M. F., Wyckoff, H. W., Carlson, W. D., Allewell, N. M., Lee, M. & Mitsui, Y. (1972). Cold Spring Harb. Symp. Quant. Biol. 36, 25–43.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210.  Web of Science CSD CrossRef CAS Google Scholar
First citationVoet, D. & Rich, A. (1970). Prog. Nucleic Acid Res. Mol. Biol. 10, 183–265.  CrossRef CAS PubMed Google Scholar
First citationZeleňák, V., Vargová, Z. & Císařová, I. (2004). Acta Cryst. E60, o742–o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2303-o2304
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds