organic compounds
Adeninium 3-carboxyanilinium bis(perchlorate) trihydrate
aLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr
In the title salt, C5H6N5+·C7H8NO2+·2ClO4−·3H2O, the 3-carboxyanilinium and adeninium cations are monoprotonated at the amino group and at a pyrimidine N atom respectively. In the crystal, the components are involved in extensive three-dimensional hydrogen-bonding networks composed of O—H⋯O, N—H⋯O, O—H⋯N, N—H⋯N and C—H⋯O interactions. Bifurcated hydrogen bonds are observed between perchlorate O atoms and adeninium cations.
Related literature
For hydrogen bonds in hybrid compounds, see: Baker et al. (1992); Richards et al. (1972). Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug-receptor interactions, protein-nucleic acid interactions and supramolecular architectures, see: Perutz & Ten Eyck (1972). For their applications in drug design and the crystal engineering of pharmaceuticals, see: Desiraju (1989). For the use of aminopyrimidine derivatives as antifolate drugs, see: Stanley et al. (2005); Hunt et al. (1980). For studies of cation–anion hydrogen-bonding in organic salts of see: Bendjeddou et al. (2003, 2009); Cherouana et al. (2003); Moussa Slimane et al. (2009). For the dependence of bond lengths and angles in adeninium cations on the degree of protonation, see: Hingerty et al. (1981); Langer & Huml (1978). For bond angles in unprotonated adenine, see: Voet & Rich (1970). For the hydrogen-bonding pattern in adeninium perchlorate adenine dihydrate, see: Zeleňák et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).
Supporting information
10.1107/S1600536809034199/at2870sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034199/at2870Isup2.hkl
The compound was obtained as colourless crystals, after few days, by slow evaporation from an aqueous solution of adenine, m-carboxyphenyl ammonium and perchloric acid in stoechiometric ratio of 1:1:1.
H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93 Å, O—H = 0.82 Å, N—H = 0.89 Å and 0.86 Å for ammonium and aromatic H atoms, respectively, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O). The H atoms of the water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit (dashed lines). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. | |
Fig. 2. A packing diagram for the title compound, viewed along the a axis, showing the formation of layers. | |
Fig. 3. View of the two-dimensional hydrogen-bonded network parallel to the (001) and (101) planes of (I), showing the aggregation of R22(8), R22(9) and R42(34) hydrogen-bonding motifs. Atoms marked with a star (*), a hash symbol (#), an ampersand (&) or an at sign (@), are at the symmetry positions (-1 + x, y, 1 + z), (-1 + x, y, z), (x, 1 - y, z), (1 + x, y - 1 + z), respectively. | |
Fig. 4. Part of the crystal structure, showing the aggregation of R44(12) and R22(4) motifs via O—H···O hydrogen bonds. Atoms marked with a hash symbol (#), an ampersand (&), dollar sign ($), or a star (*) are at the symmetry positions (-1 + x, y, z), (1 - x, -y, 1 - z), (x, -1 + y, z), (-x, -y, 1 - z), respectively. | |
Fig. 5. Bifurcate hydrogen bonding |
C5H6N5+·C7H8NO2+·2ClO4−·3H2O | Z = 2 |
Mr = 527.24 | F(000) = 544 |
Triclinic, P1 | Dx = 1.701 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9561 (1) Å | Cell parameters from 55756 reflections |
b = 10.5563 (2) Å | θ = 1.0–31.6° |
c = 11.7362 (2) Å | µ = 0.40 mm−1 |
α = 71.431 (7)° | T = 120 K |
β = 85.800 (5)° | Needle, brown |
γ = 78.192 (4)° | 0.16 × 0.1 × 0.08 mm |
V = 1029.52 (5) Å3 |
Nonius KappaCCD diffractometer | 5822 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.028 |
Graphite monochromator | θmax = 31.6°, θmin = 2.8° |
ω scans | h = 0→13 |
55756 measured reflections | k = −14→15 |
6914 independent reflections | l = −17→17 |
Refinement on F2 | 9 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0626P)2 + 0.328P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.098 | (Δ/σ)max = 0.001 |
S = 0.97 | Δρmax = 0.70 e Å−3 |
6914 reflections | Δρmin = −0.64 e Å−3 |
316 parameters |
C5H6N5+·C7H8NO2+·2ClO4−·3H2O | γ = 78.192 (4)° |
Mr = 527.24 | V = 1029.52 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.9561 (1) Å | Mo Kα radiation |
b = 10.5563 (2) Å | µ = 0.40 mm−1 |
c = 11.7362 (2) Å | T = 120 K |
α = 71.431 (7)° | 0.16 × 0.1 × 0.08 mm |
β = 85.800 (5)° |
Nonius KappaCCD diffractometer | 5822 reflections with I > 2σ(I) |
55756 measured reflections | Rint = 0.028 |
6914 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 9 restraints |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | Δρmax = 0.70 e Å−3 |
6914 reflections | Δρmin = −0.64 e Å−3 |
316 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl2 | 0.19523 (3) | 0.56122 (3) | 0.55586 (2) | 0.01535 (6) | |
Cl1 | 0.26532 (3) | 0.01925 (3) | 0.32829 (3) | 0.01919 (7) | |
O4 | 0.18456 (11) | −0.09092 (10) | 0.38018 (9) | 0.02546 (19) | |
O8 | 0.32466 (10) | 0.59734 (10) | 0.59496 (9) | 0.02321 (18) | |
O2 | 0.15769 (12) | 0.14560 (10) | 0.28846 (11) | 0.0331 (2) | |
O5 | 0.16150 (11) | 0.43814 (9) | 0.64068 (9) | 0.0262 (2) | |
O6 | 0.22752 (11) | 0.54327 (10) | 0.43911 (8) | 0.0256 (2) | |
O1W | 0.84304 (11) | 0.11571 (10) | 0.36340 (9) | 0.02322 (18) | |
H11W | 0.9191 (16) | 0.1428 (19) | 0.3222 (14) | 0.035* | |
H21W | 0.848 (2) | 0.1307 (19) | 0.4293 (11) | 0.035* | |
O2M | −0.17505 (10) | 0.23783 (10) | 1.07286 (8) | 0.02331 (18) | |
O3 | 0.36504 (13) | 0.02378 (12) | 0.41750 (10) | 0.0337 (2) | |
O3W | 0.46761 (11) | 0.68985 (11) | 0.31943 (9) | 0.02467 (19) | |
H23W | 0.4054 (18) | 0.6368 (16) | 0.3575 (16) | 0.037* | |
H13W | 0.4085 (18) | 0.7627 (12) | 0.2763 (15) | 0.037* | |
O2W | 0.41376 (10) | 0.23763 (9) | 0.51016 (8) | 0.01987 (17) | |
H22W | 0.4707 (17) | 0.1627 (12) | 0.5132 (16) | 0.03* | |
H12W | 0.4495 (19) | 0.2689 (16) | 0.5578 (14) | 0.03* | |
O7 | 0.06388 (10) | 0.66963 (9) | 0.54746 (8) | 0.02176 (18) | |
O1M | −0.27521 (10) | 0.26982 (10) | 0.89398 (8) | 0.02123 (18) | |
H1M | −0.3543 | 0.2954 | 0.9269 | 0.032* | |
O1 | 0.35415 (12) | −0.00416 (13) | 0.22739 (10) | 0.0358 (3) | |
N3A | 0.11767 (11) | 0.45851 (10) | 0.13693 (9) | 0.01576 (17) | |
N9A | 0.19753 (11) | 0.44133 (10) | −0.06160 (8) | 0.01525 (17) | |
H9A | 0.1122 | 0.4736 | −0.0989 | 0.018* | |
N1A | 0.32637 (11) | 0.37745 (10) | 0.27036 (8) | 0.01595 (18) | |
H1A | 0.355 | 0.3641 | 0.3423 | 0.019* | |
N7A | 0.44549 (11) | 0.35292 (10) | −0.02915 (9) | 0.01645 (18) | |
N1 | 0.15132 (11) | 0.14796 (10) | 0.62650 (9) | 0.01761 (18) | |
H3N | 0.0719 | 0.2065 | 0.5864 | 0.026* | |
H1N | 0.1521 | 0.0656 | 0.6211 | 0.026* | |
H2N | 0.2373 | 0.1751 | 0.5951 | 0.026* | |
N6A | 0.57570 (11) | 0.29041 (11) | 0.22322 (9) | 0.0204 (2) | |
H61 | 0.6025 | 0.2766 | 0.2957 | 0.024* | |
H62 | 0.642 | 0.2695 | 0.1721 | 0.024* | |
C4A | 0.22236 (12) | 0.42565 (11) | 0.05563 (10) | 0.01409 (19) | |
C2M | −0.01192 (12) | 0.18475 (11) | 0.91804 (10) | 0.01548 (19) | |
C6M | 0.25407 (13) | 0.08172 (13) | 0.94549 (11) | 0.0204 (2) | |
H6M | 0.3389 | 0.0453 | 0.9949 | 0.025* | |
C5M | 0.26698 (13) | 0.08683 (12) | 0.82521 (11) | 0.0194 (2) | |
H5M | 0.3596 | 0.0535 | 0.7939 | 0.023* | |
C5A | 0.37585 (12) | 0.37129 (11) | 0.07482 (10) | 0.01494 (19) | |
C1M | −0.16129 (13) | 0.23298 (12) | 0.96985 (10) | 0.0169 (2) | |
C4M | 0.13915 (13) | 0.14247 (11) | 0.75291 (10) | 0.01572 (19) | |
C6A | 0.43380 (13) | 0.34339 (11) | 0.19055 (10) | 0.0158 (2) | |
C3M | −0.00021 (13) | 0.19153 (11) | 0.79698 (10) | 0.01574 (19) | |
H3M | −0.0846 | 0.2284 | 0.7471 | 0.019* | |
C2A | 0.17701 (13) | 0.43122 (12) | 0.24266 (10) | 0.0168 (2) | |
H2A | 0.1123 | 0.45 | 0.3034 | 0.02* | |
C7M | 0.11526 (13) | 0.13073 (12) | 0.99212 (11) | 0.0182 (2) | |
H7M | 0.1073 | 0.1275 | 1.0724 | 0.022* | |
C8A | 0.33410 (13) | 0.39600 (12) | −0.10839 (10) | 0.0164 (2) | |
H8A | 0.3475 | 0.3954 | −0.1876 | 0.02* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2 | 0.01578 (12) | 0.01495 (12) | 0.01556 (12) | −0.00305 (9) | −0.00132 (8) | −0.00477 (9) |
Cl1 | 0.01813 (12) | 0.01781 (13) | 0.02080 (13) | −0.00179 (9) | −0.00226 (9) | −0.00546 (10) |
O4 | 0.0315 (5) | 0.0199 (4) | 0.0263 (5) | −0.0088 (4) | −0.0028 (4) | −0.0060 (4) |
O8 | 0.0197 (4) | 0.0283 (5) | 0.0253 (4) | −0.0077 (3) | −0.0044 (3) | −0.0105 (4) |
O2 | 0.0240 (5) | 0.0175 (4) | 0.0522 (7) | 0.0008 (4) | −0.0025 (4) | −0.0057 (4) |
O5 | 0.0276 (5) | 0.0169 (4) | 0.0291 (5) | −0.0063 (3) | −0.0021 (4) | 0.0013 (3) |
O6 | 0.0291 (5) | 0.0330 (5) | 0.0210 (4) | −0.0087 (4) | 0.0028 (4) | −0.0161 (4) |
O1W | 0.0230 (4) | 0.0241 (4) | 0.0248 (4) | −0.0031 (3) | −0.0008 (3) | −0.0114 (4) |
O2M | 0.0197 (4) | 0.0324 (5) | 0.0181 (4) | −0.0018 (4) | 0.0001 (3) | −0.0103 (4) |
O3 | 0.0338 (5) | 0.0363 (6) | 0.0382 (6) | −0.0078 (4) | −0.0126 (4) | −0.0182 (5) |
O3W | 0.0210 (4) | 0.0292 (5) | 0.0232 (4) | −0.0015 (4) | −0.0013 (3) | −0.0093 (4) |
O2W | 0.0203 (4) | 0.0218 (4) | 0.0183 (4) | −0.0027 (3) | −0.0025 (3) | −0.0077 (3) |
O7 | 0.0185 (4) | 0.0191 (4) | 0.0241 (4) | 0.0018 (3) | −0.0016 (3) | −0.0047 (3) |
O1M | 0.0134 (4) | 0.0311 (5) | 0.0186 (4) | 0.0004 (3) | −0.0002 (3) | −0.0100 (4) |
O1 | 0.0268 (5) | 0.0494 (7) | 0.0241 (5) | 0.0021 (5) | 0.0032 (4) | −0.0080 (5) |
N3A | 0.0147 (4) | 0.0177 (4) | 0.0152 (4) | −0.0025 (3) | 0.0004 (3) | −0.0061 (3) |
N9A | 0.0131 (4) | 0.0185 (4) | 0.0136 (4) | −0.0010 (3) | −0.0019 (3) | −0.0051 (3) |
N1A | 0.0154 (4) | 0.0217 (5) | 0.0120 (4) | −0.0044 (3) | −0.0003 (3) | −0.0065 (3) |
N7A | 0.0143 (4) | 0.0204 (4) | 0.0146 (4) | −0.0018 (3) | 0.0006 (3) | −0.0066 (3) |
N1 | 0.0159 (4) | 0.0186 (4) | 0.0170 (4) | −0.0014 (3) | 0.0008 (3) | −0.0051 (4) |
N6A | 0.0153 (4) | 0.0295 (5) | 0.0152 (4) | −0.0007 (4) | −0.0030 (3) | −0.0069 (4) |
C4A | 0.0145 (4) | 0.0140 (4) | 0.0136 (4) | −0.0024 (4) | −0.0011 (4) | −0.0041 (4) |
C2M | 0.0147 (5) | 0.0150 (5) | 0.0164 (5) | −0.0032 (4) | 0.0001 (4) | −0.0044 (4) |
C6M | 0.0160 (5) | 0.0218 (5) | 0.0207 (5) | −0.0010 (4) | −0.0038 (4) | −0.0036 (4) |
C5M | 0.0149 (5) | 0.0196 (5) | 0.0213 (5) | −0.0011 (4) | −0.0001 (4) | −0.0044 (4) |
C5A | 0.0139 (4) | 0.0170 (5) | 0.0141 (5) | −0.0027 (4) | −0.0008 (4) | −0.0051 (4) |
C1M | 0.0162 (5) | 0.0166 (5) | 0.0176 (5) | −0.0028 (4) | −0.0005 (4) | −0.0047 (4) |
C4M | 0.0154 (5) | 0.0152 (5) | 0.0158 (5) | −0.0030 (4) | 0.0002 (4) | −0.0038 (4) |
C6A | 0.0161 (5) | 0.0167 (5) | 0.0149 (5) | −0.0038 (4) | 0.0004 (4) | −0.0050 (4) |
C3M | 0.0141 (4) | 0.0151 (5) | 0.0174 (5) | −0.0021 (4) | −0.0009 (4) | −0.0044 (4) |
C2A | 0.0152 (5) | 0.0194 (5) | 0.0162 (5) | −0.0034 (4) | 0.0005 (4) | −0.0064 (4) |
C7M | 0.0176 (5) | 0.0187 (5) | 0.0171 (5) | −0.0032 (4) | −0.0021 (4) | −0.0038 (4) |
C8A | 0.0161 (5) | 0.0188 (5) | 0.0143 (5) | −0.0023 (4) | 0.0002 (4) | −0.0059 (4) |
Cl2—O5 | 1.4363 (9) | N7A—C8A | 1.3220 (14) |
Cl2—O8 | 1.4387 (9) | N7A—C5A | 1.3804 (14) |
Cl2—O6 | 1.4429 (9) | N1—C4M | 1.4630 (15) |
Cl2—O7 | 1.4483 (9) | N1—H3N | 0.89 |
Cl1—O1 | 1.4367 (11) | N1—H1N | 0.89 |
Cl1—O2 | 1.4386 (10) | N1—H2N | 0.89 |
Cl1—O4 | 1.4405 (10) | N6A—C6A | 1.3110 (15) |
Cl1—O3 | 1.4432 (10) | N6A—H61 | 0.86 |
O1W—H11W | 0.851 (9) | N6A—H62 | 0.86 |
O1W—H21W | 0.843 (9) | C4A—C5A | 1.3819 (15) |
O2M—C1M | 1.2225 (14) | C2M—C7M | 1.3936 (16) |
O3W—H23W | 0.869 (9) | C2M—C3M | 1.3969 (16) |
O3W—H13W | 0.868 (9) | C2M—C1M | 1.4893 (16) |
O2W—H22W | 0.840 (9) | C6M—C7M | 1.3894 (17) |
O2W—H12W | 0.843 (9) | C6M—C5M | 1.3925 (17) |
O1M—C1M | 1.3173 (14) | C6M—H6M | 0.93 |
O1M—H1M | 0.82 | C5M—C4M | 1.3876 (16) |
N3A—C2A | 1.3082 (14) | C5M—H5M | 0.93 |
N3A—C4A | 1.3625 (14) | C5A—C6A | 1.4096 (15) |
N9A—C4A | 1.3618 (14) | C4M—C3M | 1.3802 (15) |
N9A—C8A | 1.3623 (14) | C3M—H3M | 0.93 |
N9A—H9A | 0.86 | C2A—H2A | 0.93 |
N1A—C2A | 1.3612 (14) | C7M—H7M | 0.93 |
N1A—C6A | 1.3687 (14) | C8A—H8A | 0.93 |
N1A—H1A | 0.86 | ||
O5—Cl2—O8 | 110.25 (6) | N3A—C4A—C5A | 127.04 (10) |
O5—Cl2—O6 | 110.09 (6) | C7M—C2M—C3M | 120.44 (10) |
O8—Cl2—O6 | 109.38 (6) | C7M—C2M—C1M | 119.27 (10) |
O5—Cl2—O7 | 108.72 (6) | C3M—C2M—C1M | 120.28 (10) |
O8—Cl2—O7 | 109.21 (6) | C7M—C6M—C5M | 120.43 (11) |
O6—Cl2—O7 | 109.17 (6) | C7M—C6M—H6M | 119.8 |
O1—Cl1—O2 | 109.41 (7) | C5M—C6M—H6M | 119.8 |
O1—Cl1—O4 | 108.98 (7) | C4M—C5M—C6M | 118.80 (11) |
O2—Cl1—O4 | 109.54 (6) | C4M—C5M—H5M | 120.6 |
O1—Cl1—O3 | 109.60 (7) | C6M—C5M—H5M | 120.6 |
O2—Cl1—O3 | 110.26 (7) | C4A—C5A—N7A | 110.32 (9) |
O4—Cl1—O3 | 109.03 (6) | C4A—C5A—C6A | 118.20 (10) |
H11W—O1W—H21W | 105.5 (15) | N7A—C5A—C6A | 131.47 (10) |
H23W—O3W—H13W | 104.3 (14) | O2M—C1M—O1M | 123.91 (11) |
H22W—O2W—H12W | 107.2 (14) | O2M—C1M—C2M | 122.61 (11) |
C1M—O1M—H1M | 109.5 | O1M—C1M—C2M | 113.47 (10) |
C2A—N3A—C4A | 112.44 (10) | C3M—C4M—C5M | 121.97 (11) |
C4A—N9A—C8A | 106.73 (9) | C3M—C4M—N1 | 118.77 (10) |
C4A—N9A—H9A | 126.6 | C5M—C4M—N1 | 119.25 (10) |
C8A—N9A—H9A | 126.6 | N6A—C6A—N1A | 120.99 (10) |
C2A—N1A—C6A | 123.92 (10) | N6A—C6A—C5A | 125.47 (10) |
C2A—N1A—H1A | 118 | N1A—C6A—C5A | 113.54 (10) |
C6A—N1A—H1A | 118 | C4M—C3M—C2M | 118.65 (10) |
C8A—N7A—C5A | 104.25 (9) | C4M—C3M—H3M | 120.7 |
C4M—N1—H3N | 109.5 | C2M—C3M—H3M | 120.7 |
C4M—N1—H1N | 109.5 | N3A—C2A—N1A | 124.84 (10) |
H3N—N1—H1N | 109.5 | N3A—C2A—H2A | 117.6 |
C4M—N1—H2N | 109.5 | N1A—C2A—H2A | 117.6 |
H3N—N1—H2N | 109.5 | C6M—C7M—C2M | 119.70 (11) |
H1N—N1—H2N | 109.5 | C6M—C7M—H7M | 120.2 |
C6A—N6A—H61 | 120 | C2M—C7M—H7M | 120.2 |
C6A—N6A—H62 | 120 | N7A—C8A—N9A | 112.76 (10) |
H61—N6A—H62 | 120 | N7A—C8A—H8A | 123.6 |
N9A—C4A—N3A | 127.02 (10) | N9A—C8A—H8A | 123.6 |
N9A—C4A—C5A | 105.94 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O2W | 0.86 | 2.03 | 2.8135 (13) | 151 |
N1A—H1A···O6 | 0.86 | 2.54 | 3.0145 (14) | 115 |
O1M—H1M···N7Ai | 0.82 | 1.86 | 2.6676 (14) | 167 |
N1—H1N···O1Wii | 0.89 | 1.86 | 2.7381 (15) | 171 |
N1—H2N···O2W | 0.89 | 1.92 | 2.8111 (14) | 174 |
N1—H3N···O7iii | 0.89 | 2.00 | 2.8539 (14) | 162 |
N9A—H9A···N3Aiv | 0.86 | 2.07 | 2.9013 (14) | 163 |
O3W—H13W···O1v | 0.87 (2) | 2.30 (1) | 3.0378 (18) | 144 (1) |
O3W—H13W···O1Miii | 0.87 (2) | 2.55 (2) | 3.0127 (14) | 115 (1) |
O1W—H21W···O4ii | 0.84 (2) | 2.15 (1) | 2.9329 (14) | 155 (2) |
O1W—H21W···O7vi | 0.84 (2) | 2.49 (2) | 3.0553 (14) | 125 (1) |
O2W—H22W···O3 | 0.84 (1) | 2.47 (2) | 2.9164 (16) | 115 (1) |
O2W—H22W···O3ii | 0.84 (1) | 2.16 (2) | 2.9627 (16) | 159 (2) |
O3W—H23W···O6 | 0.87 (2) | 2.06 (2) | 2.9199 (14) | 170 (2) |
N6A—H61···O1W | 0.86 | 2.46 | 2.9458 (15) | 116 |
N6A—H61···O8vi | 0.86 | 2.33 | 3.0126 (15) | 137 |
N6A—H62···O2Mvii | 0.86 | 1.97 | 2.8187 (14) | 167 |
C2A—H2A···O6 | 0.93 | 2.50 | 3.0047 (15) | 115 |
C2A—H2A···O7iii | 0.93 | 2.48 | 3.2166 (15) | 136 |
C5M—H5M···O1ii | 0.93 | 2.52 | 3.3883 (17) | 156 |
C8A—H8A···O5viii | 0.93 | 2.58 | 3.2881 (15) | 133 |
C8A—H8A···O3Wix | 0.93 | 2.42 | 3.1994 (16) | 142 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) −x, −y+1, −z; (v) x, y+1, z; (vi) −x+1, −y+1, −z+1; (vii) x+1, y, z−1; (viii) x, y, z−1; (ix) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C5H6N5+·C7H8NO2+·2ClO4−·3H2O |
Mr | 527.24 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 8.9561 (1), 10.5563 (2), 11.7362 (2) |
α, β, γ (°) | 71.431 (7), 85.800 (5), 78.192 (4) |
V (Å3) | 1029.52 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.40 |
Crystal size (mm) | 0.16 × 0.1 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 55756, 6914, 5822 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.737 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.098, 0.97 |
No. of reflections | 6914 |
No. of parameters | 316 |
No. of restraints | 9 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.70, −0.64 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O2W | 0.8600 | 2.0300 | 2.8135 (13) | 151.00 |
N1A—H1A···O6 | 0.8600 | 2.5400 | 3.0145 (14) | 115.00 |
O1M—H1M···N7Ai | 0.8200 | 1.8600 | 2.6676 (14) | 167.00 |
N1—H1N···O1Wii | 0.8900 | 1.8600 | 2.7381 (15) | 171.00 |
N1—H2N···O2W | 0.8900 | 1.9200 | 2.8111 (14) | 174.00 |
N1—H3N···O7iii | 0.8900 | 2.0000 | 2.8539 (14) | 162.00 |
N9A—H9A···N3Aiv | 0.8600 | 2.0700 | 2.9013 (14) | 163.00 |
O3W—H13W···O1v | 0.868 (15) | 2.297 (14) | 3.0378 (18) | 143.5 (13) |
O3W—H13W···O1Miii | 0.868 (15) | 2.548 (16) | 3.0127 (14) | 114.5 (11) |
O1W—H21W···O4ii | 0.843 (15) | 2.149 (13) | 2.9329 (14) | 154.6 (18) |
O1W—H21W···O7vi | 0.843 (15) | 2.49 (2) | 3.0553 (14) | 124.9 (14) |
O2W—H22W···O3 | 0.841 (14) | 2.466 (15) | 2.9164 (16) | 114.5 (13) |
O2W—H22W···O3ii | 0.841 (14) | 2.161 (15) | 2.9627 (16) | 159.3 (16) |
O3W—H23W···O6 | 0.869 (17) | 2.062 (17) | 2.9199 (14) | 169.5 (16) |
N6A—H61···O1W | 0.8600 | 2.4600 | 2.9458 (15) | 116.00 |
N6A—H61···O8vi | 0.8600 | 2.3300 | 3.0126 (15) | 137.00 |
N6A—H62···O2Mvii | 0.8600 | 1.9700 | 2.8187 (14) | 167.00 |
C2A—H2A···O6 | 0.9300 | 2.5000 | 3.0047 (15) | 115.00 |
C2A—H2A···O7iii | 0.9300 | 2.4800 | 3.2166 (15) | 136.00 |
C5M—H5M···O1ii | 0.9300 | 2.5200 | 3.3883 (17) | 156.00 |
C8A—H8A···O5viii | 0.9300 | 2.5800 | 3.2881 (15) | 133.00 |
C8A—H8A···O3Wix | 0.9300 | 2.4200 | 3.1994 (16) | 142.00 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) −x, −y+1, −z; (v) x, y+1, z; (vi) −x+1, −y+1, −z+1; (vii) x+1, y, z−1; (viii) x, y, z−1; (ix) −x+1, −y+1, −z. |
Acknowledgements
Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1 is gratefully acknowledged.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19. CrossRef Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Baker, L.-J., Bowmaker, G. A., Healy, P. C., Skelton, B. W. & White, A. H. (1992). J. Chem. Soc. Dalton Trans. pp. 989–998. CSD CrossRef Web of Science Google Scholar
Bendjeddou, L., Cherouana, A., Berrah, F. & Benali-Cherif, N. (2003). Acta Cryst. E59, o574–o576. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bendjeddou, L., Cherouana, A., Hadjadj, N., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o1770–o1771. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573. CrossRef CAS Web of Science Google Scholar
Cherouana, A., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o1790–o1792. Web of Science CSD CrossRef IUCr Journals Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hingerty, B. E., Einstein, J. R. & Wei, C. H. (1981). Acta Cryst. B37, 140–147. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536. CAS PubMed Web of Science Google Scholar
Langer, V. & Huml, K. (1978). Acta Cryst. B34, 1157–1163. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moussa Slimane, N., Cherouana, A., Bendjeddou, L., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2180–o2181. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ . Google Scholar
Perutz, M. F. & Ten Eyck, L. F. (1972). Cold Spring Harb. Symp. Quant. Biol. 36, 295–310. CrossRef CAS PubMed Google Scholar
Richards, M. F., Wyckoff, H. W., Carlson, W. D., Allewell, N. M., Lee, M. & Mitsui, Y. (1972). Cold Spring Harb. Symp. Quant. Biol. 36, 25–43. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210. Web of Science CSD CrossRef CAS Google Scholar
Voet, D. & Rich, A. (1970). Prog. Nucleic Acid Res. Mol. Biol. 10, 183–265. CrossRef CAS PubMed Google Scholar
Zeleňák, V., Vargová, Z. & Císařová, I. (2004). Acta Cryst. E60, o742–o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bonds of hybrid compounds are of interest because of their widespread biological occurrence (Baker et al., 1992), Richards et al., 1972). Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug-receptor interactions, protein-nucleic acid interactions and supramolecular architectures (Perutz et al., 1972). Studies of such interactions are also of current interest because of their applications in drug design and the crystal engineering of pharmaceuticals (Desiraju et al., 1989). Pyrimidine and aminopyrimidine derivatives are biologically important as they occur in nature as components of nucleic acid. Some aminopyrimidine derivatives are used as antifolate drugs (Stanley et al., 2005; Hunt et al., 1980). The supramolecular networks become especially interesting when the cation and anion can participate in hydrogen-bonding. In this regard previous studies have been concerned with organic salts of carboxylic acids (Bendjeddou et al., 2003; 2009; Cherouana et al., 2003; Moussa Slimane et al., 2009)
Our investigations have focused on the use of perchloric, amino acids and/or nitrogen base acid as a structural building in the synthesis of hydrogen-bonded patterns inorganic-organic high-dimensional structure.
The asymmetric unit of (I) consists of two different monoprotonated adeninium and m-carboxyanilinium cations, two perchlorate anions and three water molecules (Fig. 1). A proton transfer from the perchloric acid to atom N1A of the imidazolyl moiety of adenine base and N1 of m-carboxyalinine acid resulted in the formation of salts. Adeninium cations can be either mono- or diprotonated and the bond lengths and angles are dependent on the degree of protonation (Hingerty et al., 1981; Langer & Huml, 1978). This form contains three basic N atoms, the most basic site is N1, which accepts the first proton, and the next protonation occurs at N7 and then at N3. In the title compound (I), only atom N1 is protonated. This is evident from the increase in the ring angle at the site of protonation, namely N1. The internal angles at N1 is increased from the reported values of 119.8 in unprotonated adenine (Voet & Rich, 1970). The bond lengths and angles of m-carboxyanilinium cation correspond to those expected for the atom types and the type of hybridization (Allen et al., 1987). All bond lengths and angles shows that the two perchlorate anions are tetrahedral.
The title compound is built on the basis of alternating cations and anions chains, the water molecules are sandwiched between them (Fig. 2). In (I), the cationic entities are connected into a two-dimensional hydrogen-bonded network via O—H..N, N—H···N and N—H···O hydrogen bonds, thus generating double layers, the junction between them is ensured by a N1A—H1A···O2w and N1—H2N···O2w hydrogen bonds via a water molecule (H2O(2)), forming a centrosymmetric rings a long [100] axe which can be described by the graph-set motif of R63(34) (Bernstein et al., 1995) (Fig. 3a).
The carbonyl O and the carboxyl H atoms participates in hydrogen bonding with a neighbouring adeninium cation through an N—H···O and O—H···N hydrogen bond. The combination of these two hydrogen bonds generates a noncentrosymmetric fused rings which can be described by the graph-set motif of R22(9). The adeninium cations are linked by two independents N—H···N hydrogen bonds (Table 3), atom N9A (x, y, z) acts as a hydrogen-bond donor to atom N3A at (-x, 1 - y,-z), so generating a Centrosymmetric ring R22(8). A similar pattern was also observed in the crystal structure of adeninium perchlorate adenine dihydrate (Zeleňák, et al., 2004) (Fig. 3 b).
The water molecules plays a pivotal role, they bridges the perchlorate anions as shown in Fig.4, so forming an alternating of R22(4) and an R44(12) rings running parallel to the [100] direction at a = 1/2 & 0 respectively.
The H atoms respectively from protonated atom N1 and atom C2A are involved in bifurcated hydrogen bonding with perchlorate atom O6 to form a five-membered hydrogen-bonded R21(5) ring into a two-dimensional network (Fig.5).