organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­methyl-1,1′-ethyl­ene­diimidazolium dibromide

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: danbi@njut.edu.cn

(Received 28 August 2009; accepted 6 September 2009; online 12 September 2009)

The title compound, C10H16Br2N4, was synthesized by the reaction of 1-methyl­imidazole and 1,2-dibromo­ethane in toluene. The complete dication is generated by a crystallographic inversion centre situated at the mid-point of the ethane C—C bond. In the crystal structure, weak inter­molecular C—H⋯Br inter­actions link the mol­ecules into chains along the b axis and an intramolecular C—H⋯Br close contact is also present.

Related literature

For general background, see: Ding et al. (2007[Ding, Y. S., Zha, M., Zhang, J. & Wang, S. S. (2007). Colloids Surf. A: Physicochem. Eng. 298, 201-205.]). For related literature, see: Peveling (2001[Peveling, R. (2001). J. Orthopt. Res. 10, 171-187.]); Takao & Kazuhiko (1997[Takao, S. & Kazuhiko, M. (1997). Takasago International Corporation, Tokyo, Japan. EP Patent No. 0 755 937.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N42+·2Br

  • Mr = 352.07

  • Monoclinic, P 21 /c

  • a = 8.4750 (17) Å

  • b = 8.9620 (18) Å

  • c = 9.2390 (18) Å

  • β = 107.73 (3)°

  • V = 668.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.05 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.264, Tmax = 0.583

  • 1296 measured reflections

  • 1212 independent reflections

  • 862 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.160

  • S = 1.01

  • 1212 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Br 0.93 2.92 3.591 (8) 130
C1—H1B⋯Bri 0.96 2.97 3.738 (8) 138
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft,The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a kind of ionic liquids to be used as green alternatives to volatile organic solvents inelectrochemical, synthetic and separation processes. For general background, see: (Ding et al., 2007). We herein report the crystal structure of the title compound (I).

In the molecule of (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The whole molecule has an inversion symmetry located on the ethane group of the main molecule.

In the crystal structure, weak intermolecular C—H···Br interactions (Table 1) link the molecules into chains along the b axis (Fig.2), in which they may be effective in the stabilization of the structure.

Related literature top

The title compound is a kind of ionic liquid which can be used as a green alternative to volatile organic solvents in electrochemical, synthetic and separation processes. For general background, see: Ding et al. (2007). For related literature [on what subject?], see: Peveling (2001); Takao & Kazuhiko (1997). For bond-length data, see: Allen et al. (1987).

Experimental top

The ionic liquid compound was prepared following modified literature procedures (Ding et al., 2007). 1-Methylimidazole (8.21 g, 0.1 mol) was mixed with 1,2-dibromoethane (9.38 g, 0.05 mol) in 100 ml of toluene and refluxed for 24 h; the mixture was cooled to room temperature and filtered. The solids were washed several times with ethyl acetate (800 ml) and the white product dried in vacuum (yield:7.3 g, 54.2%). The product was dissolved in the chloroform and the crystals were obtained by evaporating the chloroform slowly at room temperature for about 9 d.

Refinement top

Carbon-bound H atoms were positioned with idealized geometry [aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å] and refined with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(H)(methyl C) and Uiso(H) = 1.2Ueq (aromatic and methylene C)] using a riding model.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1985); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms labeled with the suffixes A are generated by the symmetry operation ( -x+1, -y+1, -z+1). Hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. A packing diagram for (I).
3,3'-Dimethyl-1,1'-ethylenediimidazolium dibromide top
Crystal data top
C10H16N42+·2BrF(000) = 348
Mr = 352.07Dx = 1.749 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.4750 (17) Åθ = 9–13°
b = 8.9620 (18) ŵ = 6.05 mm1
c = 9.2390 (18) ÅT = 293 K
β = 107.73 (3)°Square, white
V = 668.4 (3) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
862 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.3°, θmin = 2.5°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.264, Tmax = 0.583l = 1110
1296 measured reflections3 standard reflections every 200 reflections
1212 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.7P]
where P = (Fo2 + 2Fc2)/3
1212 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
C10H16N42+·2BrV = 668.4 (3) Å3
Mr = 352.07Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.4750 (17) ŵ = 6.05 mm1
b = 8.9620 (18) ÅT = 293 K
c = 9.2390 (18) Å0.30 × 0.20 × 0.10 mm
β = 107.73 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
862 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.264, Tmax = 0.5833 standard reflections every 200 reflections
1296 measured reflections intensity decay: 1%
1212 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 0.80 e Å3
1212 reflectionsΔρmin = 0.85 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.71826 (11)0.14503 (9)0.46360 (9)0.0320 (3)
N10.8500 (8)0.6154 (7)0.3322 (7)0.0266 (15)
C10.9914 (11)0.5837 (12)0.2817 (11)0.048 (3)
H1A0.98700.48180.24880.072*
H1B1.09120.59970.36390.072*
H1C0.99040.64860.19870.072*
N20.6231 (8)0.5865 (7)0.3878 (7)0.0224 (14)
C20.7287 (9)0.5215 (9)0.3336 (8)0.0235 (17)
H2A0.72130.42310.30030.028*
C30.6774 (10)0.7310 (9)0.4270 (9)0.0276 (19)
H3A0.62700.80230.47130.033*
C40.8169 (11)0.7482 (9)0.3886 (10)0.035 (2)
H4A0.87960.83490.39870.042*
C50.4817 (10)0.5171 (10)0.4162 (9)0.0265 (18)
H5A0.45440.42550.35810.032*
H5B0.38690.58340.38360.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0506 (5)0.0167 (5)0.0261 (5)0.0002 (4)0.0081 (4)0.0024 (4)
N10.039 (4)0.018 (4)0.024 (3)0.007 (3)0.011 (3)0.008 (3)
C10.044 (5)0.068 (7)0.039 (6)0.016 (5)0.023 (5)0.021 (6)
N20.034 (4)0.015 (3)0.015 (3)0.004 (3)0.003 (3)0.004 (3)
C20.033 (4)0.017 (4)0.018 (4)0.005 (3)0.004 (3)0.008 (3)
C30.045 (5)0.011 (4)0.028 (5)0.003 (3)0.013 (4)0.000 (3)
C40.046 (5)0.018 (4)0.040 (5)0.012 (4)0.011 (4)0.009 (4)
C50.029 (4)0.026 (4)0.024 (4)0.010 (3)0.007 (3)0.001 (4)
Geometric parameters (Å, º) top
N1—C21.331 (10)N2—C51.443 (9)
N1—C41.363 (10)C2—H2A0.9300
N1—C11.441 (10)C3—C41.343 (12)
C1—H1A0.9600C3—H3A0.9300
C1—H1B0.9600C4—H4A0.9300
C1—H1C0.9600C5—C5i1.514 (15)
N2—C21.290 (10)C5—H5A0.9700
N2—C31.386 (10)C5—H5B0.9700
C2—N1—C4107.4 (7)N1—C2—H2A124.8
C2—N1—C1126.9 (7)C4—C3—N2106.7 (7)
C4—N1—C1125.8 (7)C4—C3—H3A126.7
N1—C1—H1A109.5N2—C3—H3A126.7
N1—C1—H1B109.5C3—C4—N1107.5 (7)
H1A—C1—H1B109.5C3—C4—H4A126.2
N1—C1—H1C109.5N1—C4—H4A126.2
H1A—C1—H1C109.5N2—C5—C5i110.5 (8)
H1B—C1—H1C109.5N2—C5—H5A109.6
C2—N2—C3108.0 (6)C5i—C5—H5A109.6
C2—N2—C5126.1 (7)N2—C5—H5B109.6
C3—N2—C5125.7 (7)C5i—C5—H5B109.6
N2—C2—N1110.3 (7)H5A—C5—H5B108.1
N2—C2—H2A124.8
C3—N2—C2—N10.9 (8)N2—C3—C4—N12.0 (9)
C5—N2—C2—N1175.6 (7)C2—N1—C4—C31.5 (10)
C4—N1—C2—N20.4 (9)C1—N1—C4—C3178.1 (8)
C1—N1—C2—N2179.2 (8)C2—N2—C5—C5i101.3 (10)
C2—N2—C3—C41.8 (9)C3—N2—C5—C5i72.4 (11)
C5—N2—C3—C4176.5 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Br0.932.923.591 (8)130
C1—H1B···Brii0.962.973.738 (8)138
Symmetry code: (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H16N42+·2Br
Mr352.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.4750 (17), 8.9620 (18), 9.2390 (18)
β (°) 107.73 (3)
V3)668.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)6.05
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.264, 0.583
No. of measured, independent and
observed [I > 2σ(I)] reflections
1296, 1212, 862
Rint0.021
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.160, 1.01
No. of reflections1212
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.85

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Br0.93002.92003.591 (8)130.00
C1—H1B···Bri0.96002.96903.738 (8)138.07
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDing, Y. S., Zha, M., Zhang, J. & Wang, S. S. (2007). Colloids Surf. A: Physicochem. Eng. 298, 201–205.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft,The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPeveling, R. (2001). J. Orthopt. Res. 10, 171–187.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakao, S. & Kazuhiko, M. (1997). Takasago International Corporation, Tokyo, Japan. EP Patent No. 0 755 937.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds