organic compounds
N-{1-[(3-Bromopropyl)aminocarbonyl]ethyl}-2-(2-nitrobenzenesulfonamido)propionamide
aDepartment of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: eprabhak@orgchem.iisc.ernet.in
In the title compound, C15H21BrN4O6S, all three NH groups are involved in intermolecular N—H⋯O interactions which, together with two intermolecular C—H⋯O contacts, lead to a continuous antiparallel β-sheet structure. There are no π–π interactions between molecules, and two C—H⋯π interactions primarily govern the linkage between sheets.
Related literature
For conformationally restricted peptide analogues, see: Belvisi et al. (2000); Ripka et al. (1993). For C-H⋯π interactions in crystals and see: Ciunik et al. (1998); Görbitz (1989); Nishio (2004); Nishio & Hirota (1989). For the correlation between peptide sequences and folds, see: Venkatraman et al. (2001); Wilmot & Thornton (1988). For bond angles in β-strand structures, see: Loughlin et al. (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809034291/bg2284sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034291/bg2284Isup2.hkl
To a stirring solution of 2-[2'-(2-nitrosulfonylamido)-propionamido]-propanoic acid (650 mg, 1.88 mmol) in THF (10 ml) at 258 K was added N-methyl morpholene (0.31 ml, 2.82 mmol) followed by ethylchloroformate (0.18 ml,1.93 mmol) under N2 atmosphere. After two minutes a solution of 3-bromopropan-1-ammonium bromide (536 mg, 2.44 mmol) and N-Methyl morpholene (0.51 ml, 4.7 mmol) in a mixture of DMF/THF (1.5/3 ml) were added to the mixture and stirred for 10 min. The reaction mixture was warmed to room temperature and stirred for further 8 h. THF was removed under reduced pressure and the resulting residue was diluted with EtOAc (10 ml) and washed with saturated aqueous citric acid solution (5 ml), saturated aqueous NaHCO3 (5 ml) solution and dried (anhydrous Na2SO4). The solvent was removed under reduced pressure and the resulting residue was purified by silica gel flash
(EtOAc/Hexane:1/2) to obtain the title compound as a colorless solid 392 mg (0.84 mmol, 45%) (m.p. 404 K). Needle like crystals were obtained for the isolated compound by slow evaporation at room temperature from a solution in 2-propanol (2.1 mM).All the H atoms were positioned geometrically with C—H bond lengths of 0.93 (3)–0.97 (3) Å, and refined using a riding model approximation with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity. | |
Fig. 2. Packing diagram of (I). The dotted lines indicate intermolecular C—H···O and N—H···O interactions. |
C15H21BrN4O6S | Dx = 1.479 Mg m−3 |
Mr = 465.33 | Melting point: 404 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3007 reflections |
a = 9.4467 (4) Å | θ = 2.0–26.0° |
b = 12.7438 (5) Å | µ = 2.11 mm−1 |
c = 17.3257 (7) Å | T = 292 K |
V = 2085.79 (15) Å3 | Needle, colourless |
Z = 4 | 0.30 × 0.20 × 0.10 mm |
F(000) = 948 |
Bruker SMART CCD area-detector diffractometer | 4107 independent reflections |
Radiation source: fine-focus sealed tube | 3007 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −11→11 |
Tmin = 0.571, Tmax = 0.817 | k = −15→15 |
33853 measured reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.08P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
4107 reflections | Δρmax = 0.50 e Å−3 |
247 parameters | Δρmin = −0.51 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1763 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.011 (13) |
C15H21BrN4O6S | V = 2085.79 (15) Å3 |
Mr = 465.33 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.4467 (4) Å | µ = 2.11 mm−1 |
b = 12.7438 (5) Å | T = 292 K |
c = 17.3257 (7) Å | 0.30 × 0.20 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 4107 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 3007 reflections with I > 2σ(I) |
Tmin = 0.571, Tmax = 0.817 | Rint = 0.054 |
33853 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.138 | Δρmax = 0.50 e Å−3 |
S = 1.10 | Δρmin = −0.51 e Å−3 |
4107 reflections | Absolute structure: Flack (1983), 1763 Friedel pairs |
247 parameters | Absolute structure parameter: −0.011 (13) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.53403 (7) | −0.37246 (5) | 1.22175 (4) | 0.0837 (3) | |
S1 | 0.50247 (10) | 0.51539 (8) | 0.93158 (6) | 0.0381 (3) | |
C1 | 0.4914 (5) | 0.4329 (3) | 0.8477 (2) | 0.0399 (9) | |
C4 | 0.4882 (8) | 0.3109 (5) | 0.7161 (3) | 0.0774 (18) | |
H4 | 0.4882 | 0.2697 | 0.6719 | 0.093* | |
C2 | 0.6041 (5) | 0.3690 (4) | 0.8313 (3) | 0.0553 (12) | |
H2 | 0.6826 | 0.3681 | 0.8637 | 0.066* | |
C6 | 0.3764 (5) | 0.4355 (4) | 0.7986 (3) | 0.0436 (11) | |
C5 | 0.3759 (6) | 0.3765 (4) | 0.7309 (3) | 0.0633 (14) | |
H5 | 0.3009 | 0.3815 | 0.6963 | 0.076* | |
C3 | 0.6009 (6) | 0.3060 (4) | 0.7667 (4) | 0.0692 (16) | |
H3 | 0.6751 | 0.2599 | 0.7571 | 0.083* | |
O3 | 0.4231 (3) | 0.6086 (2) | 0.91578 (19) | 0.0506 (8) | |
O4 | 0.6505 (3) | 0.5244 (3) | 0.9481 (2) | 0.0550 (9) | |
O1 | 0.1799 (4) | 0.4744 (3) | 0.8693 (2) | 0.0690 (10) | |
O2 | 0.2243 (5) | 0.5726 (3) | 0.7713 (3) | 0.0828 (12) | |
N1 | 0.2509 (4) | 0.5005 (4) | 0.8145 (3) | 0.0526 (10) | |
N2 | 0.4295 (3) | 0.4562 (2) | 1.0023 (2) | 0.0345 (8) | |
H2A | 0.3557 | 0.4835 | 1.0233 | 0.041* | |
C9 | 0.4065 (4) | 0.2648 (3) | 0.9969 (3) | 0.0363 (9) | |
C7 | 0.4847 (4) | 0.3563 (3) | 1.0325 (2) | 0.0335 (8) | |
H7 | 0.5856 | 0.3507 | 1.0199 | 0.040* | |
C8 | 0.4666 (7) | 0.3526 (4) | 1.1197 (3) | 0.0709 (16) | |
H8A | 0.5211 | 0.4078 | 1.1430 | 0.106* | |
H8B | 0.4988 | 0.2860 | 1.1388 | 0.106* | |
H8C | 0.3685 | 0.3617 | 1.1325 | 0.106* | |
O5 | 0.2778 (3) | 0.2645 (3) | 0.9909 (2) | 0.0607 (10) | |
N3 | 0.4858 (3) | 0.1824 (2) | 0.9757 (2) | 0.0362 (8) | |
H3A | 0.5765 | 0.1867 | 0.9789 | 0.043* | |
C12 | 0.5198 (4) | −0.0043 (3) | 0.9661 (2) | 0.0383 (9) | |
C10 | 0.4212 (4) | 0.0847 (3) | 0.9472 (3) | 0.0432 (11) | |
H10 | 0.3307 | 0.0735 | 0.9735 | 0.052* | |
C11 | 0.3953 (6) | 0.0907 (4) | 0.8584 (3) | 0.0611 (14) | |
H11A | 0.3342 | 0.1489 | 0.8471 | 0.092* | |
H11B | 0.3518 | 0.0268 | 0.8411 | 0.092* | |
H11C | 0.4841 | 0.1001 | 0.8323 | 0.092* | |
O6 | 0.6452 (3) | −0.0016 (2) | 0.94723 (19) | 0.0473 (8) | |
N4 | 0.4607 (4) | −0.0872 (3) | 1.0009 (2) | 0.0497 (9) | |
H4A | 0.3710 | −0.0865 | 1.0092 | 0.060* | |
C13 | 0.5414 (6) | −0.1783 (4) | 1.0252 (3) | 0.0582 (13) | |
H13A | 0.6400 | −0.1582 | 1.0307 | 0.070* | |
H13B | 0.5362 | −0.2312 | 0.9851 | 0.070* | |
C14 | 0.4926 (6) | −0.2250 (4) | 1.0989 (3) | 0.0663 (14) | |
H14A | 0.3973 | −0.2521 | 1.0924 | 0.080* | |
H14B | 0.4901 | −0.1712 | 1.1385 | 0.080* | |
C15 | 0.5908 (7) | −0.3138 (5) | 1.1244 (3) | 0.0698 (15) | |
H15A | 0.6866 | −0.2872 | 1.1287 | 0.084* | |
H15B | 0.5905 | −0.3686 | 1.0855 | 0.084* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0935 (5) | 0.0790 (5) | 0.0787 (4) | −0.0189 (3) | −0.0056 (3) | 0.0102 (4) |
S1 | 0.0347 (5) | 0.0326 (5) | 0.0469 (6) | −0.0058 (4) | −0.0054 (4) | 0.0037 (4) |
C1 | 0.042 (2) | 0.037 (2) | 0.041 (2) | 0.0002 (19) | 0.0050 (19) | 0.0055 (18) |
C4 | 0.111 (5) | 0.065 (3) | 0.056 (3) | −0.004 (4) | 0.031 (4) | −0.018 (3) |
C2 | 0.049 (3) | 0.053 (3) | 0.064 (3) | 0.003 (2) | 0.013 (2) | 0.002 (3) |
C6 | 0.048 (3) | 0.043 (3) | 0.039 (3) | −0.006 (2) | 0.0000 (18) | −0.004 (2) |
C5 | 0.075 (4) | 0.066 (3) | 0.049 (3) | −0.011 (3) | 0.003 (2) | −0.003 (3) |
C3 | 0.071 (3) | 0.054 (3) | 0.083 (4) | 0.011 (3) | 0.026 (3) | −0.006 (3) |
O3 | 0.060 (2) | 0.0286 (15) | 0.063 (2) | 0.0015 (14) | −0.0122 (15) | 0.0029 (15) |
O4 | 0.0340 (15) | 0.062 (2) | 0.069 (2) | −0.0152 (15) | −0.0057 (14) | 0.0093 (18) |
O1 | 0.058 (2) | 0.087 (3) | 0.062 (2) | 0.013 (2) | 0.0060 (19) | −0.007 (2) |
O2 | 0.097 (3) | 0.073 (3) | 0.078 (3) | 0.020 (2) | −0.024 (2) | 0.021 (3) |
N1 | 0.052 (2) | 0.059 (3) | 0.047 (2) | 0.0065 (19) | −0.0159 (19) | −0.008 (2) |
N2 | 0.0293 (17) | 0.0308 (17) | 0.043 (2) | −0.0017 (13) | 0.0021 (14) | −0.0028 (15) |
C9 | 0.029 (2) | 0.030 (2) | 0.050 (3) | −0.0036 (16) | 0.0025 (18) | 0.0012 (19) |
C7 | 0.0304 (19) | 0.0297 (19) | 0.040 (2) | 0.0039 (16) | −0.0006 (17) | −0.0001 (17) |
C8 | 0.106 (5) | 0.059 (3) | 0.047 (3) | 0.002 (3) | −0.004 (3) | 0.000 (2) |
O5 | 0.0262 (15) | 0.0428 (19) | 0.113 (3) | 0.0017 (13) | 0.0000 (17) | −0.021 (2) |
N3 | 0.0216 (15) | 0.0293 (16) | 0.058 (2) | −0.0037 (14) | −0.0016 (15) | −0.0067 (15) |
C12 | 0.034 (2) | 0.032 (2) | 0.050 (2) | −0.0031 (17) | −0.0015 (17) | −0.0110 (18) |
C10 | 0.030 (2) | 0.029 (2) | 0.070 (3) | −0.0064 (16) | 0.003 (2) | −0.006 (2) |
C11 | 0.075 (4) | 0.049 (3) | 0.059 (3) | 0.000 (2) | −0.023 (3) | −0.011 (3) |
O6 | 0.0345 (15) | 0.0413 (17) | 0.066 (2) | −0.0021 (13) | 0.0056 (13) | −0.0032 (16) |
N4 | 0.041 (2) | 0.040 (2) | 0.068 (2) | −0.0050 (16) | 0.0005 (17) | 0.0037 (18) |
C13 | 0.063 (3) | 0.038 (2) | 0.074 (4) | 0.001 (2) | 0.003 (3) | −0.001 (2) |
C14 | 0.062 (3) | 0.052 (3) | 0.086 (4) | −0.009 (3) | 0.001 (3) | 0.001 (3) |
C15 | 0.089 (4) | 0.068 (4) | 0.053 (3) | −0.002 (3) | −0.004 (3) | −0.002 (3) |
Br1—C15 | 1.921 (6) | C7—H7 | 0.9800 |
S1—O3 | 1.431 (3) | C8—H8A | 0.9600 |
S1—O4 | 1.431 (3) | C8—H8B | 0.9600 |
S1—N2 | 1.595 (3) | C8—H8C | 0.9600 |
S1—C1 | 1.797 (4) | N3—C10 | 1.471 (5) |
C1—C2 | 1.370 (7) | N3—H3A | 0.8600 |
C1—C6 | 1.380 (6) | C12—O6 | 1.229 (5) |
C4—C5 | 1.375 (8) | C12—N4 | 1.338 (5) |
C4—C3 | 1.381 (9) | C12—C10 | 1.503 (6) |
C4—H4 | 0.9300 | C10—C11 | 1.560 (6) |
C2—C3 | 1.377 (7) | C10—H10 | 0.9800 |
C2—H2 | 0.9300 | C11—H11A | 0.9600 |
C6—C5 | 1.393 (7) | C11—H11B | 0.9600 |
C6—N1 | 1.473 (6) | C11—H11C | 0.9600 |
C5—H5 | 0.9300 | N4—C13 | 1.452 (6) |
C3—H3 | 0.9300 | N4—H4A | 0.8600 |
O1—N1 | 1.209 (6) | C13—C14 | 1.482 (8) |
O2—N1 | 1.211 (6) | C13—H13A | 0.9700 |
N2—C7 | 1.472 (5) | C13—H13B | 0.9700 |
N2—H2A | 0.8600 | C14—C15 | 1.529 (8) |
C9—O5 | 1.220 (5) | C14—H14A | 0.9700 |
C9—N3 | 1.342 (5) | C14—H14B | 0.9700 |
C9—C7 | 1.513 (5) | C15—H15A | 0.9700 |
C7—C8 | 1.521 (6) | C15—H15B | 0.9700 |
O3—S1—O4 | 118.90 (19) | C7—C8—H8C | 109.5 |
O3—S1—N2 | 108.22 (19) | H8A—C8—H8C | 109.5 |
O4—S1—N2 | 107.87 (19) | H8B—C8—H8C | 109.5 |
O3—S1—C1 | 107.47 (19) | C9—N3—C10 | 121.5 (3) |
O4—S1—C1 | 105.4 (2) | C9—N3—H3A | 119.3 |
N2—S1—C1 | 108.64 (18) | C10—N3—H3A | 119.3 |
C2—C1—C6 | 119.8 (4) | O6—C12—N4 | 122.9 (4) |
C2—C1—S1 | 118.1 (4) | O6—C12—C10 | 121.2 (4) |
C6—C1—S1 | 122.0 (3) | N4—C12—C10 | 115.8 (3) |
C5—C4—C3 | 120.3 (5) | N3—C10—C12 | 108.0 (3) |
C5—C4—H4 | 119.8 | N3—C10—C11 | 110.8 (4) |
C3—C4—H4 | 119.8 | C12—C10—C11 | 110.4 (4) |
C1—C2—C3 | 119.9 (5) | N3—C10—H10 | 109.2 |
C1—C2—H2 | 120.1 | C12—C10—H10 | 109.2 |
C3—C2—H2 | 120.1 | C11—C10—H10 | 109.2 |
C1—C6—C5 | 120.6 (5) | C10—C11—H11A | 109.5 |
C1—C6—N1 | 122.1 (4) | C10—C11—H11B | 109.5 |
C5—C6—N1 | 117.3 (4) | H11A—C11—H11B | 109.5 |
C4—C5—C6 | 118.8 (5) | C10—C11—H11C | 109.5 |
C4—C5—H5 | 120.6 | H11A—C11—H11C | 109.5 |
C6—C5—H5 | 120.6 | H11B—C11—H11C | 109.5 |
C2—C3—C4 | 120.4 (5) | C12—N4—C13 | 122.9 (4) |
C2—C3—H3 | 119.8 | C12—N4—H4A | 118.6 |
C4—C3—H3 | 119.8 | C13—N4—H4A | 118.6 |
O1—N1—O2 | 125.4 (5) | N4—C13—C14 | 114.1 (5) |
O1—N1—C6 | 116.0 (4) | N4—C13—H13A | 108.7 |
O2—N1—C6 | 118.6 (4) | C14—C13—H13A | 108.7 |
C7—N2—S1 | 122.0 (3) | N4—C13—H13B | 108.7 |
C7—N2—H2A | 119.0 | C14—C13—H13B | 108.7 |
S1—N2—H2A | 119.0 | H13A—C13—H13B | 107.6 |
O5—C9—N3 | 122.1 (4) | C13—C14—C15 | 111.0 (5) |
O5—C9—C7 | 121.6 (4) | C13—C14—H14A | 109.4 |
N3—C9—C7 | 116.3 (3) | C15—C14—H14A | 109.4 |
N2—C7—C9 | 110.4 (3) | C13—C14—H14B | 109.4 |
N2—C7—C8 | 109.9 (4) | C15—C14—H14B | 109.4 |
C9—C7—C8 | 109.0 (4) | H14A—C14—H14B | 108.0 |
N2—C7—H7 | 109.2 | C14—C15—Br1 | 111.9 (4) |
C9—C7—H7 | 109.2 | C14—C15—H15A | 109.2 |
C8—C7—H7 | 109.2 | Br1—C15—H15A | 109.2 |
C7—C8—H8A | 109.5 | C14—C15—H15B | 109.2 |
C7—C8—H8B | 109.5 | Br1—C15—H15B | 109.2 |
H8A—C8—H8B | 109.5 | H15A—C15—H15B | 107.9 |
O3—S1—C1—C2 | 148.8 (4) | O4—S1—N2—C7 | −50.8 (3) |
O4—S1—C1—C2 | 21.1 (4) | C1—S1—N2—C7 | 62.9 (3) |
N2—S1—C1—C2 | −94.3 (4) | S1—N2—C7—C9 | −95.6 (4) |
O3—S1—C1—C6 | −28.7 (4) | S1—N2—C7—C8 | 144.0 (4) |
O4—S1—C1—C6 | −156.4 (4) | O5—C9—C7—N2 | −45.2 (5) |
N2—S1—C1—C6 | 88.2 (4) | N3—C9—C7—N2 | 137.9 (4) |
C6—C1—C2—C3 | −1.3 (7) | O5—C9—C7—C8 | 75.7 (6) |
S1—C1—C2—C3 | −178.8 (4) | N3—C9—C7—C8 | −101.3 (5) |
C2—C1—C6—C5 | −2.4 (7) | O5—C9—N3—C10 | −2.8 (7) |
S1—C1—C6—C5 | 175.0 (4) | C7—C9—N3—C10 | 174.1 (4) |
C2—C1—C6—N1 | 178.3 (4) | C9—N3—C10—C12 | −152.0 (4) |
S1—C1—C6—N1 | −4.3 (6) | C9—N3—C10—C11 | 87.0 (5) |
C3—C4—C5—C6 | −1.7 (8) | O6—C12—C10—N3 | −52.6 (5) |
C1—C6—C5—C4 | 3.9 (7) | N4—C12—C10—N3 | 130.4 (4) |
N1—C6—C5—C4 | −176.8 (5) | O6—C12—C10—C11 | 68.6 (5) |
C1—C2—C3—C4 | 3.5 (8) | N4—C12—C10—C11 | −108.4 (4) |
C5—C4—C3—C2 | −1.9 (9) | O6—C12—N4—C13 | 5.1 (7) |
C1—C6—N1—O1 | −67.9 (6) | C10—C12—N4—C13 | −178.0 (4) |
C5—C6—N1—O1 | 112.8 (5) | C12—N4—C13—C14 | 143.2 (5) |
C1—C6—N1—O2 | 114.4 (5) | N4—C13—C14—C15 | −174.7 (4) |
C5—C6—N1—O2 | −64.9 (6) | C13—C14—C15—Br1 | 177.8 (4) |
O3—S1—N2—C7 | 179.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O6i | 0.86 | 2.07 | 2.884 (4) | 158 |
N3—H3A···O6 | 0.86 | 2.54 | 2.829 (4) | 100 |
N3—H3A···O5ii | 0.86 | 2.07 | 2.899 (4) | 162 |
N4—H4A···O4i | 0.86 | 2.35 | 3.165 (5) | 159 |
C2—H2···O4 | 0.93 | 2.49 | 2.867 (6) | 104 |
C7—H7···O5ii | 0.98 | 2.34 | 3.193 (5) | 145 |
C10—H10···O4i | 0.98 | 2.51 | 3.431 (5) | 156 |
C13—H13A···O6 | 0.97 | 2.46 | 2.802 (6) | 100 |
C13—H13B···O3iii | 0.97 | 2.60 | 3.496 (6) | 154 |
C11—H11A···Cg | 3.39 | 0.96 | 3.922 (6) | 117 |
C11—H11B···Cgi | 3.27 | 0.96 | 3.857 (6) | 121 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+2; (ii) x+1/2, −y+1/2, −z+2; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C15H21BrN4O6S |
Mr | 465.33 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 292 |
a, b, c (Å) | 9.4467 (4), 12.7438 (5), 17.3257 (7) |
V (Å3) | 2085.79 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.11 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.571, 0.817 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33853, 4107, 3007 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.138, 1.10 |
No. of reflections | 4107 |
No. of parameters | 247 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.51 |
Absolute structure | Flack (1983), 1763 Friedel pairs |
Absolute structure parameter | −0.011 (13) |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O6i | 0.8600 | 2.0700 | 2.884 (4) | 158.00 |
N3—H3A···O6 | 0.8600 | 2.5400 | 2.829 (4) | 100.00 |
N3—H3A···O5ii | 0.8600 | 2.0700 | 2.899 (4) | 162.00 |
N4—H4A···O4i | 0.8600 | 2.3500 | 3.165 (5) | 159.00 |
C2—H2···O4 | 0.9300 | 2.4900 | 2.867 (6) | 104.00 |
C7—H7···O5ii | 0.9800 | 2.3400 | 3.193 (5) | 145.00 |
C10—H10···O4i | 0.9800 | 2.5100 | 3.431 (5) | 156.00 |
C13—H13A···O6 | 0.9700 | 2.4600 | 2.802 (6) | 100.00 |
C13—H13B···O3iii | 0.9700 | 2.6000 | 3.496 (6) | 154.00 |
C11—H11A···Cg | 3.391 | 0.960 | 3.922 (6) | 117 |
C11—H11B···Cgi | 3.270 | 0.960 | 3.857 (6) | 121 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+2; (ii) x+1/2, −y+1/2, −z+2; (iii) x, y−1, z. |
Acknowledgements
The authors are grateful to Professor T. N. Guru Row for valuable discussions and for allowing access to the CCD facility, IISc, Bangalore. RT and DNR thank the CSIR for their Junior Research Fellowships.
References
Belvisi, L., Bernardi, A., Manzoni, L., Potenza, D. & Scolastico, C. (2000). Eur. J. Org. Chem. pp. 2563–2569. CrossRef Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ciunik, Z., Berski, S., Latajka, Z. & Leszczynski, J. (1998). J. Mol. Struct. 442, 125–134. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Görbitz, C. H. (1989). Acta Cryst. B45, 390–395. CrossRef Web of Science IUCr Journals Google Scholar
Loughlin, W. A., Tyndall, J. D. A., Glenn, M. P. & Fairlie, P. D. (2004). Chem. Rev. 104, 6085–6117. Web of Science CrossRef PubMed CAS Google Scholar
Nishio, M. (2004). CrystEngComm, 6, 130–158. Web of Science CrossRef CAS Google Scholar
Nishio, M. & Hirota, M. (1989). Tetrahedron, 45, 7201–7245. CrossRef CAS Web of Science Google Scholar
Ripka, W. C., De Lucca, G. V., Bach, A. C., Pottorf, R. S. & Blaney, J. M. (1993). Tetrahedron, 49, 3593–3068. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Venkatraman, J., Shankaramma, S. C. & Balaram, P. (2001). Chem. Rev. 101, 3131–3152. Web of Science CrossRef PubMed CAS Google Scholar
Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Wilmot, C. M. & Thornton, J. M. (1988). J. Mol. Biol. 203, 221–232. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is a precursor for making conformationally restricted dipeptide analogues, which are essential for many molecular recognition events including interactions between antigens and antibodies, peptide hormones and their receptors, and enzymes and their corresponding substrates (Ripka et al., 1993; Belvisi et al., 2000). The dipeptide sequence Ala-Ala has a low frequency of appearance in the conformationally ordered regions of polypeptides (Wilmot & Thornton, 1988; Venkatraman et al., 2001). The sulfonamide group is known to render conformational ordering in peptides and many sulfonamides are crystalline in nature. The title compound was synthesized to investigate the ordering rendered to Ala-Ala dipeptide by the N-nosyl (2-nitro-benzenesulfonylamino) protecting group. In the crystal structure all the three NH groups of the molecule are involved in intermolecular N—H···O interactions.
The two adjacent amide N-H bonds, N3—H3 and N4—H4, that flank the C- terminal alanine in the title compound are antiperiplanar to each other. The phi, psi angles for the C-terminal alanine are phi = -151.9 (5)°, psi = 130.4 (2)°. These angles and the H3-N3-N4-H4 dihedral angle (166.1 (3)°) are within the limits of those found in b-strand structures (Loughlin et al., 2004). On the other hand, the two adjacent N-H bonds N2—H2 and N3—H3 that flank the N-terminal alanine are slightly distorted away from ideal antiperiplanarity (H2-N2-N3-H3 dihedral angle = 150.2 (5)°). The phi, psi angles for the N-terminal alanine are phi = 95.6 (2)°, psi = 137.8 (7)°. The distortion from the ideal phi value for a beta-strand near N2 is probably due to the fact that N2 is bonded to a sulfonyl group rather than an acyl group.
The strands are arranged in a head-to-tail fashion, with three intermolecular N—H···O interactions and two intermolecular C—H···O interactions (Table 1). These interactions are between adjacent strands and assist in forming a continuous beta-sheet structure. The C1—S1—N2—C7 torsion angle is 62.9 (3)°. This orients the phenyl ring at a dihedral angle of 73.9 (1)° from the mean plane of the rest of the molecule. The crystal structure is stabilized by two C—H···π interactions. One is intermolecular (C11—Cg = 3.85 A°, Cg: the centroid of the phenyl ring) and the other is intramolecular (C11—Cg = 3.92 A°). There are no π–π interactions between the phenyl rings and the interactions between the sheets are solely governed by the C—H···π interactions.