organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-3,5-bis­­(2-thienylmethyl­ene)-4-piperidone

aBinzhou Medical College, Yantai 264003, People's Republic of China
*Correspondence e-mail: sjf.xzy@163.com

(Received 30 July 2009; accepted 25 August 2009; online 5 September 2009)

In the title compound, C22H19NOS2, the thio­phene rings form angles of 69.74 (18) and 65.56 (16)° with the benzene ring. The piperidone ring adopts a half-chair conformation due to the presence of the conjugated ketone systems. Both thio­phene rings are disordered over two orientations [occupancies of 0.758 (2)/0.242 (2) and 0.588 (2)/0.412 (2)] at 180° from one another. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds, C—H⋯π and aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.865 (3) Å] help to stabilize the packing.

Related literature

For general background to 3,5-bis(arylidene)-4-piperidone derivatives, see: Baluja et al. (1964[Baluja, G., Municio, A. M. & Vega, S. (1964). Chem. Ind. pp. 2053-2054.]). Benvenuto et al. (1993[Benvenuto, J. A., Connor, T. A., Monteith, D. K., Laidlaw, J. W., Adams, S. C., Matney, T. S. & Theiss, J. C. (1993). J. Pharm. Sci. 82, 988-991.]); Dimmock et al. (1983[Dimmock, J. R., Raghavan, S. K., Logan, B. M. & Bigam, G. E. (1983). Eur. J. Med. Chem. 18, 248-254.]); Dimmock et al. (2003[Dimmock, J. R., Jha, A., Zello, G. A., Sharma, R. K., Shrivastav, A., Selvakumar, P., Allen, T. M., Santos, C. L., Balzarini, J., Clercq, E. D., Manavathu, E. K. & Stables, J. P. (2003). J. Enzyme Inhib. Med. Chem. 18, 325-332.]); El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]). For details of the synthesis, see: Pati et al. (2009[Pati, H. N., Das, U., Das, S. & Bandy, B. (2009). Eur. J. Med. Chem. 44, 54-62.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19NOS2

  • Mr = 377.50

  • Triclinic, [P \overline 1]

  • a = 5.7110 (11) Å

  • b = 9.4072 (19) Å

  • c = 17.338 (4) Å

  • α = 87.82 (3)°

  • β = 87.55 (3)°

  • γ = 81.99 (3)°

  • V = 921.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 113 K

  • 0.19 × 0.16 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.945, Tmax = 0.971

  • 9377 measured reflections

  • 4321 independent reflections

  • 3660 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.05

  • 4321 reflections

  • 268 parameters

  • 58 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.99 2.59 3.4946 (18) 151
C10—H10B⋯O1i 0.99 2.56 3.4747 (18) 153
C11—H11⋯O1ii 0.95 2.45 3.319 (2) 153
C13—H13⋯O1ii 0.95 2.56 3.338 (6) 140
C2—H2⋯Cg6iii 0.95 2.68 3.520 (5) 148
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z+1; (iii) x-1, y+1, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

At present, a series of 3,5-bis(arylidene)-4-piperidone derivatives have been synthesized and proved to display cytotoxic and anticancer properties (El-Subbagh, et al. 2000; Dimmock, et al. 2003). These compounds possess marked affinities for thiols but with little or no affinities for amino or hydroxyl groups found in nucleic acids (Baluja, et al. 1964; Dimmock, et al. 1983). Thus development of these compounds as candidate cytotoxics may lead to the obtention od drugs which lack the undesirable genotoxic properties present in various antineoplastic agents (Benvenuto et al. 1993). Here, we report the title compound (I), which is a combination of cyclic α, β-unsaturated ketone (chalcone) and β-amino ketone, which could be used as a basic unit to prepare antineoplastic compounds.

The molecular structure of the title compound (I) is shown in Fig. 1. The thiophene rings determine angles of 69.74 (18)° and 65.56 (16)° with the benzene ring. The piperidone ring adopts a half-chair conformation due to the presence of conjugated ketone systems,and both of the thiophene rings were found disordered over two orientations, respectively. In the crystal, weak intermolecular C—H···O hydrogen bonds and aromatic π-π stacking interactions [shortest centroid- centroid separation = 3.865 (3) Å] help stabilizing the packing.

Related literature top

For general background, see: Baluja et al. (1964). Benvenuto et al.(1993); Dimmock et al. (1983); Dimmock et al. (2003); El-Subbagh et al. (2000). For details of the synthesis, see: Pati et al. (2009).

Experimental top

The title compound was synthesized according to the literature (Pati et al. 2009). Dry hydrogen chloride was continuously bubbled into a solution of N-benzyl-4-piperidone (0.01 mol) and 2-thieneylaldehyde (0.02 mol) in acetic acid (25 ml) at room temperature. Then the mixture was stirred at room temperature for 8 h., when the precipitate obtained was collected and washed with acetone (20 ml) and added to an aqueous potassium carbonate solution (5%, w/v). The desired product was obtained after the solid was crystallized in a mixture of ethanol and chloroform (1:1, V/V), in a yield of 75.6%. Suitable crystals for X-ray analysis were obtained by slow evaporation of the solution of title compound in a mixture of chloroform and methanol.

Refinement top

All H atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.95 and 0.99 Å. Both thiophene rings were found disordered with occupancies of 0.758 (2)/0.242 (2) and 0.588 (2)/0.412 (2), respectively. The disordered thiophene moieties were restricted to have C—C, Cδbond C and C—S distances of 1.46 (1)Å, 1.36 (1) Å and 1.7 (1) Å, respectively.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Only the main part of each disordered thienyl ring is labelled.
[Figure 2] Fig. 2. The packing diagram of (I). Dashed lines indicate C—H···O hydrogen bonds.
1-Benzyl-3,5-bis(2-thienylmethylene)-4-piperidone top
Crystal data top
C22H19NOS2Z = 2
Mr = 377.50F(000) = 396
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7110 (11) ÅCell parameters from 2974 reflections
b = 9.4072 (19) Åθ = 2.3–27.4°
c = 17.338 (4) ŵ = 0.30 mm1
α = 87.82 (3)°T = 113 K
β = 87.55 (3)°Block, colorless
γ = 81.99 (3)°0.19 × 0.16 × 0.10 mm
V = 921.1 (3) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4321 independent reflections
Radiation source: rotating anode3660 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.031
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω and ϕ scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1112
Tmin = 0.945, Tmax = 0.971l = 2222
9377 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.2715P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4321 reflectionsΔρmax = 0.33 e Å3
268 parametersΔρmin = 0.23 e Å3
58 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (7)
Crystal data top
C22H19NOS2γ = 81.99 (3)°
Mr = 377.50V = 921.1 (3) Å3
Triclinic, P1Z = 2
a = 5.7110 (11) ÅMo Kα radiation
b = 9.4072 (19) ŵ = 0.30 mm1
c = 17.338 (4) ÅT = 113 K
α = 87.82 (3)°0.19 × 0.16 × 0.10 mm
β = 87.55 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4321 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3660 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.971Rint = 0.031
9377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03958 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
4321 reflectionsΔρmin = 0.23 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.10269 (17)1.04217 (11)0.40042 (6)0.0258 (2)
N10.6906 (2)0.83369 (11)0.29936 (6)0.0179 (2)
S10.62468 (11)1.24588 (7)0.15845 (4)0.02485 (18)0.757 (2)
C10.5420 (7)1.3962 (7)0.1016 (3)0.0266 (8)0.757 (2)
H10.64251.43370.06320.032*0.757 (2)
C20.3140 (7)1.4554 (5)0.1182 (4)0.0254 (7)0.757 (2)
H20.23571.53790.09200.031*0.757 (2)
C30.2069 (10)1.3777 (7)0.1801 (4)0.0271 (8)0.757 (2)
H30.04901.40400.19930.033*0.757 (2)
C40.3533 (11)1.2632 (9)0.2086 (6)0.0188 (9)0.757 (2)
S1'0.1590 (8)1.4029 (5)0.1772 (3)0.0271 (8)0.243 (2)
C1'0.351 (2)1.4701 (19)0.1149 (13)0.0254 (7)0.243 (2)
H1'0.31511.55560.08420.031*0.243 (2)
C2'0.563 (3)1.388 (2)0.1139 (13)0.0266 (8)0.243 (2)
H2'0.69291.40680.08080.032*0.243 (2)
C3'0.5729 (16)1.2660 (11)0.1688 (6)0.02485 (18)0.243 (2)
H3'0.71271.20210.17940.030*0.243 (2)
C4'0.357 (3)1.255 (3)0.2029 (19)0.0188 (9)0.243 (2)
C50.2893 (2)1.17132 (14)0.27215 (8)0.0193 (3)
H50.13371.19680.29350.023*
C60.4133 (2)1.05527 (14)0.30644 (7)0.0178 (3)
C70.3030 (2)0.99300 (14)0.37716 (8)0.0187 (3)
C80.4454 (2)0.87146 (14)0.41855 (7)0.0182 (3)
C90.6814 (2)0.81022 (14)0.38344 (7)0.0190 (3)
H9A0.80740.85580.40610.023*
H9B0.71130.70590.39600.023*
C100.6555 (2)0.98827 (14)0.27952 (8)0.0198 (3)
H10A0.67431.00310.22290.024*
H10B0.77671.03510.30410.024*
C110.3543 (2)0.82590 (14)0.48683 (7)0.0197 (3)
H110.20460.87650.50190.024*
S20.7205 (3)0.61663 (12)0.53477 (8)0.0240 (2)0.5857 (19)
C120.445 (3)0.716 (4)0.5395 (19)0.0203 (8)0.5857 (19)
C130.3181 (9)0.6735 (6)0.6021 (3)0.0232 (3)0.5857 (19)
H130.16060.71550.61450.028*0.5857 (19)
C140.4430 (6)0.5605 (3)0.64780 (19)0.0247 (7)0.5857 (19)
H140.38020.52000.69390.030*0.5857 (19)
C150.6667 (8)0.5177 (7)0.6164 (4)0.0290 (11)0.5857 (19)
H150.77660.44270.63750.035*0.5857 (19)
S2'0.3013 (3)0.64625 (16)0.61623 (9)0.0232 (3)0.4143 (19)
C12'0.469 (4)0.710 (6)0.540 (3)0.0203 (8)0.4143 (19)
C13'0.6958 (16)0.6399 (9)0.5400 (5)0.0240 (2)0.4143 (19)
H13'0.81820.66000.50410.029*0.4143 (19)
C14'0.7256 (14)0.5307 (11)0.6014 (6)0.0290 (11)0.4143 (19)
H14'0.87090.47040.60950.035*0.4143 (19)
C15'0.5303 (10)0.5224 (5)0.6456 (3)0.0247 (7)0.4143 (19)
H15'0.52020.45620.68800.030*0.4143 (19)
C160.9204 (2)0.76582 (15)0.26799 (8)0.0215 (3)
H16A0.94320.66280.28400.026*
H16B1.04790.81100.29000.026*
C170.9401 (2)0.77921 (14)0.18092 (8)0.0196 (3)
C181.1212 (3)0.84215 (15)0.14380 (9)0.0267 (3)
H181.23510.87800.17340.032*
C191.1376 (3)0.85323 (17)0.06335 (9)0.0342 (4)
H191.26260.89620.03830.041*
C200.9723 (3)0.80178 (18)0.02021 (9)0.0355 (4)
H200.98310.80930.03460.043*
C210.7906 (3)0.73904 (18)0.05690 (9)0.0329 (4)
H210.67640.70380.02720.039*
C220.7747 (3)0.72757 (16)0.13676 (8)0.0251 (3)
H220.64990.68410.16160.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0185 (5)0.0275 (5)0.0292 (5)0.0011 (4)0.0057 (4)0.0033 (4)
N10.0179 (6)0.0160 (5)0.0182 (5)0.0023 (4)0.0023 (4)0.0001 (4)
S10.0206 (4)0.0249 (3)0.0266 (3)0.0014 (2)0.0062 (2)0.0067 (2)
C10.0339 (12)0.0242 (11)0.021 (2)0.0028 (9)0.0019 (13)0.0046 (10)
C20.0331 (16)0.0182 (13)0.0241 (10)0.0003 (12)0.0031 (13)0.0014 (8)
C30.0295 (19)0.0229 (17)0.0278 (7)0.0002 (12)0.0064 (11)0.0057 (9)
C40.0208 (7)0.0175 (12)0.0176 (17)0.0004 (6)0.0005 (6)0.0038 (13)
S1'0.0295 (19)0.0229 (17)0.0278 (7)0.0002 (12)0.0064 (11)0.0057 (9)
C1'0.0331 (16)0.0182 (13)0.0241 (10)0.0003 (12)0.0031 (13)0.0014 (8)
C2'0.0339 (12)0.0242 (11)0.021 (2)0.0028 (9)0.0019 (13)0.0046 (10)
C3'0.0206 (4)0.0249 (3)0.0266 (3)0.0014 (2)0.0062 (2)0.0067 (2)
C4'0.0208 (7)0.0175 (12)0.0176 (17)0.0004 (6)0.0005 (6)0.0038 (13)
C50.0174 (6)0.0186 (6)0.0218 (6)0.0022 (5)0.0005 (5)0.0015 (5)
C60.0170 (6)0.0171 (6)0.0194 (6)0.0029 (5)0.0005 (5)0.0030 (5)
C70.0178 (6)0.0168 (6)0.0214 (6)0.0023 (5)0.0001 (5)0.0029 (5)
C80.0185 (7)0.0174 (6)0.0193 (6)0.0036 (5)0.0007 (5)0.0032 (5)
C90.0182 (6)0.0192 (6)0.0187 (6)0.0002 (5)0.0001 (5)0.0006 (5)
C100.0192 (7)0.0173 (6)0.0216 (6)0.0005 (5)0.0025 (5)0.0014 (5)
C110.0202 (7)0.0189 (6)0.0202 (6)0.0031 (5)0.0001 (5)0.0030 (5)
S20.0215 (5)0.0240 (5)0.0242 (4)0.0047 (3)0.0041 (3)0.0019 (3)
C120.025 (3)0.019 (2)0.0171 (7)0.004 (3)0.002 (3)0.0014 (8)
C130.0233 (5)0.0290 (7)0.0169 (7)0.0053 (4)0.0021 (4)0.0048 (4)
C140.035 (2)0.0210 (17)0.0186 (8)0.0037 (13)0.0021 (14)0.0007 (11)
C150.041 (3)0.0247 (15)0.021 (3)0.000 (2)0.010 (2)0.0045 (12)
S2'0.0233 (5)0.0290 (7)0.0169 (7)0.0053 (4)0.0021 (4)0.0048 (4)
C12'0.025 (3)0.019 (2)0.0171 (7)0.004 (3)0.002 (3)0.0014 (8)
C13'0.0215 (5)0.0240 (5)0.0242 (4)0.0047 (3)0.0041 (3)0.0019 (3)
C14'0.041 (3)0.0247 (15)0.021 (3)0.000 (2)0.010 (2)0.0045 (12)
C15'0.035 (2)0.0210 (17)0.0186 (8)0.0037 (13)0.0021 (14)0.0007 (11)
C160.0192 (7)0.0220 (6)0.0215 (7)0.0042 (5)0.0006 (5)0.0021 (5)
C170.0187 (7)0.0162 (6)0.0218 (6)0.0047 (5)0.0023 (5)0.0008 (5)
C180.0243 (7)0.0219 (7)0.0327 (8)0.0012 (6)0.0043 (6)0.0001 (6)
C190.0343 (9)0.0281 (8)0.0359 (9)0.0034 (7)0.0152 (7)0.0090 (6)
C200.0445 (10)0.0348 (8)0.0204 (7)0.0153 (7)0.0056 (7)0.0043 (6)
C210.0342 (9)0.0361 (8)0.0257 (7)0.0073 (7)0.0061 (6)0.0059 (6)
C220.0225 (7)0.0264 (7)0.0252 (7)0.0002 (6)0.0018 (5)0.0024 (6)
Geometric parameters (Å, º) top
O1—C71.2301 (17)C11—C121.413 (4)
N1—C91.4659 (16)C11—C12'1.497 (5)
N1—C161.4688 (17)C11—H110.9500
N1—C101.4696 (16)S2—C151.704 (4)
S1—C11.715 (3)S2—C121.716 (6)
S1—C41.735 (3)C12—C131.355 (6)
C1—C21.366 (4)C13—C141.428 (5)
C1—H10.9500C13—H130.9500
C2—C31.439 (6)C14—C151.381 (5)
C2—H20.9500C14—H140.9500
C3—C41.359 (5)C15—H150.9500
C3—H30.9500S2'—C15'1.707 (5)
C4—C51.441 (3)S2'—C12'1.735 (7)
S1'—C1'1.677 (9)C12'—C13'1.372 (8)
S1'—C4'1.720 (9)C13'—C14'1.450 (7)
C1'—C2'1.342 (9)C13'—H13'0.9500
C1'—H1'0.9500C14'—C15'1.336 (6)
C2'—C3'1.458 (8)C14'—H14'0.9500
C2'—H2'0.9500C15'—H15'0.9500
C3'—C4'1.361 (9)C16—C171.5108 (18)
C3'—H3'0.9500C16—H16A0.9900
C4'—C51.479 (9)C16—H16B0.9900
C5—C61.3484 (19)C17—C181.385 (2)
C5—H50.9500C17—C221.390 (2)
C6—C71.4917 (18)C18—C191.395 (2)
C6—C101.5007 (18)C18—H180.9500
C7—C81.4870 (18)C19—C201.378 (3)
C8—C111.3515 (19)C19—H190.9500
C8—C91.5031 (18)C20—C211.384 (3)
C9—H9A0.9900C20—H200.9500
C9—H9B0.9900C21—C221.385 (2)
C10—H10A0.9900C21—H210.9500
C10—H10B0.9900C22—H220.9500
C9—N1—C16109.11 (10)C8—C11—C12130.8 (5)
C9—N1—C10110.22 (10)C8—C11—C12'126.7 (6)
C16—N1—C10110.54 (11)C8—C11—H11114.6
C1—S1—C492.37 (16)C12—C11—H11114.6
C2—C1—S1111.8 (2)C12'—C11—H11118.6
C2—C1—H1124.1C15—S2—C1292.9 (2)
S1—C1—H1124.1C13—C12—C11123.1 (5)
C1—C2—C3111.8 (3)C13—C12—S2110.5 (3)
C1—C2—H2124.1C11—C12—S2126.4 (4)
C3—C2—H2124.1C12—C13—C14114.0 (4)
C4—C3—C2113.5 (4)C12—C13—H13123.0
C4—C3—H3123.3C14—C13—H13123.0
C2—C3—H3123.3C15—C14—C13111.2 (3)
C3—C4—C5123.9 (4)C15—C14—H14124.4
C3—C4—S1110.5 (3)C13—C14—H14124.4
C5—C4—S1125.6 (2)C14—C15—S2111.3 (3)
C1'—S1'—C4'93.9 (4)C14—C15—H15124.3
C2'—C1'—S1'111.4 (5)S2—C15—H15124.3
C2'—C1'—H1'124.3C15'—S2'—C12'93.0 (3)
S1'—C1'—H1'124.3C13'—C12'—C11130.6 (6)
C1'—C2'—C3'112.9 (6)C13'—C12'—S2'110.3 (4)
C1'—C2'—H2'123.5C11—C12'—S2'119.1 (5)
C3'—C2'—H2'123.5C12'—C13'—C14'111.5 (5)
C4'—C3'—C2'111.5 (6)C12'—C13'—H13'124.2
C4'—C3'—H3'124.3C14'—C13'—H13'124.2
C2'—C3'—H3'124.3C15'—C14'—C13'114.0 (5)
C3'—C4'—C5130.6 (14)C15'—C14'—H14'123.0
C3'—C4'—S1'109.9 (6)C13'—C14'—H14'123.0
C5—C4'—S1'116.2 (8)C14'—C15'—S2'111.3 (4)
C6—C5—C4130.75 (18)C14'—C15'—H15'124.4
C6—C5—C4'128.6 (4)S2'—C15'—H15'124.4
C6—C5—H5114.6N1—C16—C17112.48 (11)
C4—C5—H5114.6N1—C16—H16A109.1
C4'—C5—H5116.6C17—C16—H16A109.1
C5—C6—C7117.13 (12)N1—C16—H16B109.1
C5—C6—C10124.42 (12)C17—C16—H16B109.1
C7—C6—C10118.43 (11)H16A—C16—H16B107.8
O1—C7—C8121.69 (12)C18—C17—C22118.98 (13)
O1—C7—C6120.77 (12)C18—C17—C16121.17 (13)
C8—C7—C6117.54 (11)C22—C17—C16119.85 (13)
C11—C8—C7117.02 (12)C17—C18—C19120.50 (15)
C11—C8—C9124.41 (12)C17—C18—H18119.8
C7—C8—C9118.55 (11)C19—C18—H18119.8
N1—C9—C8111.58 (11)C20—C19—C18119.98 (15)
N1—C9—H9A109.3C20—C19—H19120.0
C8—C9—H9A109.3C18—C19—H19120.0
N1—C9—H9B109.3C19—C20—C21119.85 (14)
C8—C9—H9B109.3C19—C20—H20120.1
H9A—C9—H9B108.0C21—C20—H20120.1
N1—C10—C6110.42 (11)C20—C21—C22120.19 (16)
N1—C10—H10A109.6C20—C21—H21119.9
C6—C10—H10A109.6C22—C21—H21119.9
N1—C10—H10B109.6C21—C22—C17120.50 (15)
C6—C10—H10B109.6C21—C22—H22119.7
H10A—C10—H10B108.1C17—C22—H22119.7
C4—S1—C1—C21.8 (8)C9—N1—C10—C663.56 (14)
S1—C1—C2—C31.4 (9)C16—N1—C10—C6175.74 (11)
C1—C2—C3—C40.1 (12)C5—C6—C10—N1150.83 (13)
C2—C3—C4—C5178.1 (10)C7—C6—C10—N131.04 (16)
C2—C3—C4—S11.2 (13)C7—C8—C11—C12180 (3)
C1—S1—C4—C31.7 (10)C9—C8—C11—C121 (3)
C1—S1—C4—C5177.6 (10)C7—C8—C11—C12'177 (4)
C4'—S1'—C1'—C2'2 (3)C9—C8—C11—C12'1 (4)
S1'—C1'—C2'—C3'2 (3)C8—C11—C12—C13173 (2)
C1'—C2'—C3'—C4'6 (4)C8—C11—C12—S27 (6)
C2'—C3'—C4'—C5166 (3)C15—S2—C12—C130 (3)
C2'—C3'—C4'—S1'7 (4)C15—S2—C12—C11179 (4)
C1'—S1'—C4'—C3'5 (3)C11—C12—C13—C14180 (3)
C1'—S1'—C4'—C5167 (3)S2—C12—C13—C140 (4)
C3—C4—C5—C6180.0 (8)C12—C13—C14—C151 (3)
S1—C4—C5—C60.7 (15)C13—C14—C15—S21.3 (7)
C3—C4—C5—C4'117 (16)C12—S2—C15—C140.9 (19)
S1—C4—C5—C4'64 (14)C8—C11—C12'—C13'11 (9)
C3'—C4'—C5—C620 (6)C8—C11—C12'—S2'169 (2)
S1'—C4'—C5—C6177.4 (12)C15'—S2'—C12'—C13'2 (5)
C3'—C4'—C5—C4100 (18)C15'—S2'—C12'—C11178 (5)
S1'—C4'—C5—C457 (12)C11—C12'—C13'—C14'178 (6)
C4—C5—C6—C7173.6 (8)S2'—C12'—C13'—C14'2 (5)
C4'—C5—C6—C7179 (2)C12'—C13'—C14'—C15'1 (4)
C4—C5—C6—C104.6 (8)C13'—C14'—C15'—S2'0.4 (13)
C4'—C5—C6—C101 (2)C12'—S2'—C15'—C14'1 (3)
C5—C6—C7—O13.41 (19)C9—N1—C16—C17177.35 (11)
C10—C6—C7—O1178.32 (12)C10—N1—C16—C1761.29 (15)
C5—C6—C7—C8175.80 (12)N1—C16—C17—C18123.42 (14)
C10—C6—C7—C82.48 (18)N1—C16—C17—C2256.69 (16)
O1—C7—C8—C116.0 (2)C22—C17—C18—C190.1 (2)
C6—C7—C8—C11173.18 (12)C16—C17—C18—C19179.75 (12)
O1—C7—C8—C9175.57 (12)C17—C18—C19—C200.2 (2)
C6—C7—C8—C95.24 (18)C18—C19—C20—C210.1 (2)
C16—N1—C9—C8177.33 (11)C19—C20—C21—C220.1 (2)
C10—N1—C9—C861.11 (15)C20—C21—C22—C170.2 (2)
C11—C8—C9—N1155.81 (13)C18—C17—C22—C210.1 (2)
C7—C8—C9—N125.90 (16)C16—C17—C22—C21179.98 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.593.4946 (18)151
C10—H10B···O1i0.992.563.4747 (18)153
C11—H11···O1ii0.952.453.319 (2)153
C13—H13···O1ii0.952.563.338 (6)140
C2—H2···Cg6iii0.952.683.520 (5)148
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H19NOS2
Mr377.50
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)5.7110 (11), 9.4072 (19), 17.338 (4)
α, β, γ (°)87.82 (3), 87.55 (3), 81.99 (3)
V3)921.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.19 × 0.16 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.945, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
9377, 4321, 3660
Rint0.031
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.05
No. of reflections4321
No. of parameters268
No. of restraints58
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Selected geometric parameters (Å, º) top
O1—C71.2301 (17)C8—C111.3515 (19)
N1—C161.4688 (17)
C9—N1—C16109.11 (10)C1—S1—C492.37 (16)
C9—N1—C10110.22 (10)C6—C5—C4130.75 (18)
C4—S1—C1—C21.8 (8)S1—C4—C5—C60.7 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.593.4946 (18)151
C10—H10B···O1i0.992.563.4747 (18)153
C11—H11···O1ii0.952.453.319 (2)153
C13—H13···O1ii0.952.563.338 (6)140
C2—H2···Cg6iii0.952.683.520 (5)148
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1; (iii) x1, y+1, z.
 

Acknowledgements

The authors are grateful to Binzhou Medical college for financial support.

References

First citationBaluja, G., Municio, A. M. & Vega, S. (1964). Chem. Ind. pp. 2053–2054.  Google Scholar
First citationBenvenuto, J. A., Connor, T. A., Monteith, D. K., Laidlaw, J. W., Adams, S. C., Matney, T. S. & Theiss, J. C. (1993). J. Pharm. Sci. 82, 988–991.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDimmock, J. R., Jha, A., Zello, G. A., Sharma, R. K., Shrivastav, A., Selvakumar, P., Allen, T. M., Santos, C. L., Balzarini, J., Clercq, E. D., Manavathu, E. K. & Stables, J. P. (2003). J. Enzyme Inhib. Med. Chem. 18, 325–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Raghavan, S. K., Logan, B. M. & Bigam, G. E. (1983). Eur. J. Med. Chem. 18, 248–254.  CAS Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPati, H. N., Das, U., Das, S. & Bandy, B. (2009). Eur. J. Med. Chem. 44, 54-62.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds