organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­aniline–picric acid (2/1)

aCollege of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
*Correspondence e-mail: yanwatercn@wust.edu.cn

(Received 3 August 2009; accepted 16 September 2009; online 30 September 2009)

In the title adduct, C6H3N3O7·0.5C6H6N2O2, the complete 4-nitro­aniline mol­ecule is generated by a crystallographic twofold axis with two C atoms and two N atoms lying on the axis. The mol­ecular components are linked into two dimensional corrugated layers running parallel to the (001) plane by a combination of inter­molecular N—H⋯O and C—H⋯O hydrogen bonds. The phenolic oxygen and two sets of nitro oxygen atoms in the picric acid were found to be disordered with occupancies of 0.81 (2):0.19 (2) and 0.55 (3):0.45 (3) and 0.77 (4):0.23 (4), respectively.

Related literature

For background to picrate derivatives, see: Harrison et al. (2007[Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.]); Pascard et al. (1982[Pascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). Chem. Commun. pp. 557-558.]); Pearson et al. (2007[Pearson, W. H., Kropf, J. E., Choy, A. L., Lee, I. Y. & Kampf, J. W. (2007). J. Org. Chem. 72, 4135-4148.]); Wang et al. (2003[Wang, Q. R., Li, Z., Yang, H. Y., Li, F., Ding, Z. B. & Tao, F. G. (2003). Synthesis, pp. 1231-1235.]).

[Scheme 1]

Experimental

Crystal data
  • C6H3N3O7·0.5C6H6N2O2

  • Mr = 298.18

  • Orthorhombic, P b c n

  • a = 23.534 (2) Å

  • b = 9.3318 (8) Å

  • c = 10.5047 (9) Å

  • V = 2307.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 16332 measured reflections

  • 2855 independent reflections

  • 2154 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.136

  • S = 1.06

  • 2855 reflections

  • 241 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.55 3.442 (10) 161
C9—H9⋯O5ii 0.93 2.53 3.286 (4) 139
N4—H4A⋯O6 0.86 2.44 3.2677 (16) 161
O1—H1A⋯O7 0.82 1.85 2.553 (2) 143
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Picric acid has been early used in the characterization of organic bases because of the ease of crystallization and hence purification when picrate derivatives were produced (Pascard et al., 1982; Wang et al., 2003; Pearson et al., 2007; Harrison et al., 2007). Here, we report the crystal structure of the title adduct, 2(C6H3N3O7).C6H6N2O2, (I), where the hydrogen atom was not transferred from the picric acid to the nitroaniline molecule, as expected, thus forming a neutral 1:2 molecular adduct (acid to base) (Fig.1). The 4-nitroaniline molecule is bisected by a mirror plane through the N4-C7···C10-N5 line, and the picric acid unit presents a number of disordered sites (see refinement section for details). In the latter acid group, the parameters of C1—O1 = 1.347 (4)Å and C6—C1—C2=115.2 (3)° are indicative of the proton presence, confirmed by the difference electron density map.

In the crystal packing, the molecular components are linked into a dimensional zigzag-like layer (Fig.2) running parallel to the (001) plane by a combination of intermolecular N—H···O, O—H···N and C—H···O hydrogen bonds (Table 1).

Related literature top

For backgrounto picrate derivatives, see: Harrison et al. (2007); Pascard et al. (1982); Pearson et al. (2007); Wang et al. (2003).

Experimental top

Picric acid (0.6873 g, 3 mmol) and 4-nitroaniline (0.4144 g, 3 mmol) were mixed in 10 ml e thanol.The mixture was kept at room temperature for two weeks,after which time needle like yellow crystals (0.40 x 0.08 x 0.03 mm) suitable for single-crystal X-ray diffraction were obtained.

Refinement top

In the refinement, the phenolic oxygen O1 and two sets of nitro-oxygen atoms ( O2/O3 and O4/O5) in the picric acid were found to be disordered over two positions. They were refined by using soft restraints (SHELXL commands PART, DFIX and SADI). The final occupancies refined to 0.81:0.19 (2), 0.55:0.45 (3) and 0.77:0.23 (4) for O1, O2/O3 and O4/O5 atoms, respectively.

Hydrogen H4A atom was first determined in the difference electron density map and placed at its idealized position with N—H = 0.86 Å and Uiso(H) =1.2Ueq(N). Owing to the disorder, hydrogen atoms attached to phenolic O1 or O1' atoms were placed also at the idealizeded positions with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(N). The carbonic hydrogen atoms were positioned into their respective idealized positions, with C—H = 0.93 Å and Uiso(Haryl) = 1.2Ueq(Caryl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as blue dashed lines. Symmetry code a: 1-x, y, -z+1/2
[Figure 2] Fig. 2. Section of the title structure, showing the two-dimensional (001) layer. Hydrogen bonds are shown as dashed lines. For the sake of clarity, the H atoms not involved in the hydrogen-bonds pattern have been omitted.
4-Nitroaniline–picric acid (2/1) top
Crystal data top
C6H3N3O7·0.5C6H6N2O2F(000) = 1216
Mr = 298.18Dx = 1.717 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5243 reflections
a = 23.534 (2) Åθ = 2.4–27.1°
b = 9.3318 (8) ŵ = 0.16 mm1
c = 10.5047 (9) ÅT = 298 K
V = 2307.0 (3) Å3Block, red
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2154 reflections with I > 2σ(I)
Radiation source: fine focus sealed Siemens Mo tubeRint = 0.033
Graphite monochromatorθmax = 28.3°, θmin = 2.4°
0.3° wide ω exposures scansh = 3031
16332 measured reflectionsk = 1212
2855 independent reflectionsl = 138
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.2759P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2855 reflectionsΔρmax = 0.22 e Å3
241 parametersΔρmin = 0.26 e Å3
18 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (9)
Crystal data top
C6H3N3O7·0.5C6H6N2O2V = 2307.0 (3) Å3
Mr = 298.18Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 23.534 (2) ŵ = 0.16 mm1
b = 9.3318 (8) ÅT = 298 K
c = 10.5047 (9) Å0.30 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2154 reflections with I > 2σ(I)
16332 measured reflectionsRint = 0.033
2855 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04618 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
2855 reflectionsΔρmin = 0.26 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.66852 (7)0.40572 (18)0.75606 (17)0.0504 (4)
H10.67330.50230.77530.061*0.194 (3)
C20.69244 (6)0.29633 (18)0.83061 (16)0.0496 (4)
C30.68653 (7)0.15487 (18)0.80130 (17)0.0517 (4)
H30.70320.08520.85240.062*
C40.65585 (7)0.11617 (18)0.69592 (17)0.0511 (4)
C50.63050 (7)0.21640 (19)0.61822 (16)0.0508 (4)
H50.60980.18900.54680.061*0.806 (3)
C60.63686 (6)0.35912 (17)0.65015 (16)0.0488 (4)
C70.50000.6849 (3)0.25000.0505 (5)
C80.52386 (7)0.76184 (19)0.35141 (16)0.0533 (4)
H80.53970.71270.41980.064*
C90.52404 (7)0.90824 (19)0.35084 (15)0.0533 (4)
H90.54030.95850.41810.064*
C100.50000.9812 (3)0.25000.0515 (6)
N40.50000.5397 (3)0.25000.0760 (7)
H4A0.51480.49360.31270.091*
N50.50001.1374 (3)0.25000.0705 (6)
N10.72518 (7)0.33052 (17)0.94650 (15)0.0607 (4)
N20.64972 (8)0.03633 (18)0.66686 (19)0.0733 (5)
N30.60883 (7)0.46447 (16)0.56958 (16)0.0598 (4)
O10.67753 (7)0.54438 (16)0.78695 (17)0.0670 (6)0.81 (2)
H1A0.66030.59620.73700.080*0.806 (3)
O20.7225 (5)0.4511 (5)0.9832 (7)0.084 (2)0.55 (3)
O30.7584 (9)0.2434 (12)0.980 (2)0.130 (5)0.55 (3)
O50.6212 (4)0.0676 (7)0.5744 (6)0.100 (2)0.77 (4)
O40.6739 (6)0.1218 (7)0.7350 (9)0.108 (2)0.77 (4)
O1'0.6057 (3)0.1603 (7)0.5099 (6)0.079 (3)0.19 (2)
H1'0.61010.07310.50880.119*0.194 (3)
O2'0.7386 (8)0.4462 (8)0.9798 (8)0.093 (3)0.45 (3)
O3'0.7319 (7)0.2298 (7)1.0257 (8)0.082 (3)0.45 (3)
O4'0.6609 (16)0.120 (3)0.752 (2)0.106 (8)0.23 (4)
O5'0.6331 (17)0.077 (3)0.5624 (14)0.108 (8)0.23 (4)
O60.58058 (7)0.42228 (16)0.48088 (16)0.0820 (5)
O70.61414 (7)0.59241 (15)0.59443 (18)0.0839 (5)
O80.52462 (9)1.20034 (17)0.33516 (17)0.1041 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0482 (8)0.0479 (9)0.0552 (10)0.0025 (6)0.0033 (7)0.0010 (7)
C20.0454 (8)0.0525 (9)0.0508 (9)0.0017 (7)0.0013 (7)0.0044 (7)
C30.0508 (8)0.0497 (9)0.0545 (10)0.0053 (7)0.0042 (7)0.0011 (7)
C40.0519 (9)0.0474 (9)0.0541 (10)0.0002 (7)0.0010 (7)0.0065 (7)
C50.0465 (8)0.0576 (10)0.0483 (9)0.0035 (7)0.0009 (7)0.0014 (8)
C60.0445 (8)0.0505 (9)0.0515 (10)0.0010 (7)0.0029 (7)0.0063 (7)
C70.0487 (11)0.0499 (12)0.0531 (13)0.0000.0063 (10)0.000
C80.0554 (9)0.0604 (10)0.0441 (9)0.0068 (7)0.0050 (7)0.0052 (7)
C90.0587 (10)0.0594 (10)0.0417 (9)0.0001 (7)0.0079 (7)0.0046 (7)
C100.0584 (13)0.0478 (12)0.0482 (13)0.0000.0035 (10)0.000
N40.1002 (18)0.0528 (13)0.0750 (17)0.0000.0071 (14)0.000
N50.0951 (17)0.0549 (13)0.0614 (14)0.0000.0084 (13)0.000
N10.0598 (9)0.0596 (9)0.0626 (10)0.0030 (7)0.0093 (7)0.0083 (8)
N20.0863 (12)0.0529 (9)0.0805 (13)0.0035 (9)0.0180 (10)0.0131 (9)
N30.0598 (9)0.0540 (9)0.0657 (10)0.0041 (7)0.0051 (8)0.0115 (7)
O10.0826 (12)0.0428 (8)0.0757 (12)0.0040 (7)0.0190 (9)0.0021 (7)
O20.103 (4)0.060 (2)0.090 (3)0.002 (3)0.024 (2)0.039 (3)
O30.137 (8)0.103 (4)0.149 (9)0.046 (4)0.097 (7)0.042 (4)
O50.110 (3)0.066 (2)0.124 (5)0.015 (2)0.059 (3)0.038 (3)
O40.151 (4)0.047 (2)0.127 (5)0.0128 (19)0.064 (4)0.011 (3)
O1'0.093 (5)0.075 (5)0.070 (5)0.001 (4)0.025 (4)0.002 (4)
O2'0.123 (7)0.084 (4)0.073 (3)0.062 (4)0.037 (3)0.030 (4)
O3'0.110 (6)0.058 (3)0.078 (4)0.012 (3)0.040 (3)0.002 (2)
O4'0.20 (2)0.045 (7)0.068 (8)0.000 (9)0.011 (13)0.001 (5)
O5'0.174 (18)0.098 (13)0.052 (8)0.035 (11)0.004 (10)0.026 (7)
O60.1017 (11)0.0681 (9)0.0763 (10)0.0034 (8)0.0344 (9)0.0128 (7)
O70.0925 (10)0.0513 (8)0.1079 (12)0.0020 (7)0.0244 (9)0.0104 (8)
O80.1598 (18)0.0609 (9)0.0916 (12)0.0151 (10)0.0387 (11)0.0121 (9)
Geometric parameters (Å, º) top
C1—O11.351 (2)C9—C101.381 (2)
C1—C21.404 (2)C9—H90.9300
C1—C61.408 (2)C10—C9i1.381 (2)
C1—H10.9300C10—N51.457 (3)
C2—C31.363 (2)N4—H4A0.8600
C2—N11.476 (2)N5—O8i1.2169 (18)
C3—C41.370 (2)N5—O81.2169 (18)
C3—H30.9300N1—O2'1.178 (6)
C4—C51.377 (2)N1—O31.182 (5)
C4—N21.463 (2)N1—O21.191 (5)
C5—C61.382 (2)N1—O3'1.265 (5)
C5—O1'1.382 (6)N2—O41.214 (5)
C5—H50.9300N2—O51.216 (4)
C6—N31.455 (2)N2—O4'1.221 (10)
C7—N41.355 (3)N2—O5'1.225 (10)
C7—C81.402 (2)N3—O61.210 (2)
C7—C8i1.402 (2)N3—O71.228 (2)
C8—C91.366 (2)O1—H1A0.8200
C8—H80.9300O1'—H1'0.8200
O1—C1—C2119.97 (16)C10—C9—H9120.2
O1—C1—C6124.67 (16)C9—C10—C9i120.9 (2)
C2—C1—C6115.35 (15)C9—C10—N5119.56 (11)
C2—C1—H1122.3C9i—C10—N5119.56 (11)
C6—C1—H1122.3C7—N4—H4A120.0
C3—C2—C1122.50 (16)O8i—N5—O8122.3 (3)
C3—C2—N1116.69 (15)O8i—N5—C10118.85 (13)
C1—C2—N1120.81 (15)O8—N5—C10118.85 (13)
C2—C3—C4119.45 (16)O2'—N1—O3111.4 (6)
C2—C3—H3120.3O3—N1—O2126.1 (5)
C4—C3—H3120.3O2'—N1—O3'116.8 (5)
C3—C4—C5121.88 (16)O2—N1—O3'119.7 (6)
C3—C4—N2118.49 (16)O2'—N1—C2125.7 (5)
C5—C4—N2119.63 (16)O3—N1—C2116.3 (4)
C4—C5—C6117.63 (16)O2—N1—C2116.3 (4)
C4—C5—O1'114.4 (3)O3'—N1—C2116.6 (4)
C6—C5—O1'127.7 (3)O4—N2—O5124.9 (4)
C4—C5—H5121.2O5—N2—O4'123.6 (15)
C6—C5—H5121.2O4—N2—O5'118.4 (16)
C5—C6—C1123.16 (15)O4'—N2—O5'122.1 (15)
C5—C6—N3117.44 (15)O4—N2—C4118.0 (4)
C1—C6—N3119.39 (15)O5—N2—C4117.0 (3)
N4—C7—C8120.81 (11)O4'—N2—C4116.7 (13)
N4—C7—C8i120.81 (11)O5'—N2—C4121.3 (13)
C8—C7—C8i118.4 (2)O6—N3—O7122.38 (16)
C9—C8—C7120.67 (16)O6—N3—C6118.48 (15)
C9—C8—H8119.7O7—N3—C6119.13 (16)
C7—C8—H8119.7C1—O1—H1A109.5
C8—C9—C10119.70 (16)C5—O1'—H1'109.5
C8—C9—H9120.2
O1—C1—C2—C3177.52 (17)C9—C10—N5—O8i175.18 (14)
C6—C1—C2—C31.3 (2)C9i—C10—N5—O8i4.82 (14)
O1—C1—C2—N13.0 (2)C9—C10—N5—O84.82 (14)
C6—C1—C2—N1178.16 (14)C9i—C10—N5—O8175.18 (14)
C1—C2—C3—C40.5 (3)C3—C2—N1—O2'173.0 (10)
N1—C2—C3—C4179.01 (15)C1—C2—N1—O2'7.5 (10)
C2—C3—C4—C50.1 (3)C3—C2—N1—O324.2 (17)
C2—C3—C4—N2179.55 (16)C1—C2—N1—O3156.3 (17)
C3—C4—C5—C60.1 (3)C3—C2—N1—O2168.1 (6)
N2—C4—C5—C6179.26 (16)C1—C2—N1—O211.4 (6)
C3—C4—C5—O1'174.3 (4)C3—C2—N1—O3'18.2 (9)
N2—C4—C5—O1'6.3 (5)C1—C2—N1—O3'161.3 (9)
C4—C5—C6—C11.1 (2)C3—C4—N2—O42.7 (9)
O1'—C5—C6—C1172.5 (5)C5—C4—N2—O4177.9 (9)
C4—C5—C6—N3178.51 (15)C3—C4—N2—O5178.4 (6)
O1'—C5—C6—N37.9 (5)C5—C4—N2—O51.0 (6)
O1—C1—C6—C5177.14 (16)C3—C4—N2—O4'16 (2)
C2—C1—C6—C51.6 (2)C5—C4—N2—O4'163 (2)
O1—C1—C6—N33.3 (3)C3—C4—N2—O5'165 (2)
C2—C1—C6—N3177.95 (14)C5—C4—N2—O5'15 (2)
N4—C7—C8—C9179.68 (12)C5—C6—N3—O61.5 (2)
C8i—C7—C8—C90.32 (12)C1—C6—N3—O6178.11 (17)
C7—C8—C9—C100.6 (2)C5—C6—N3—O7179.18 (17)
C8—C9—C10—C9i0.31 (12)C1—C6—N3—O71.2 (2)
C8—C9—C10—N5179.68 (12)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2ii0.932.553.442 (10)161
C9—H9···O5iii0.932.533.286 (4)139
N4—H4A···O60.862.443.2677 (16)161
O1—H1A···O70.821.852.553 (2)143
Symmetry codes: (ii) x+3/2, y1/2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H3N3O7·0.5C6H6N2O2
Mr298.18
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)23.534 (2), 9.3318 (8), 10.5047 (9)
V3)2307.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16332, 2855, 2154
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.06
No. of reflections2855
No. of parameters241
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.553.442 (10)160.5
C9—H9···O5ii0.932.533.286 (4)139.0
N4—H4A···O60.862.443.2677 (16)161.2
O1—H1A···O70.821.852.553 (2)142.8
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x, y+1, z.
 

Acknowledgements

The author thanks Wuhan University of Science and Technology for supporting this study.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.  CSD CrossRef IUCr Journals Google Scholar
First citationPascard, C., Riche, C., Cesario, M., Kotzyba-Hibert, F. & Lehn, J. M. (1982). Chem. Commun. pp. 557–558.  CrossRef Google Scholar
First citationPearson, W. H., Kropf, J. E., Choy, A. L., Lee, I. Y. & Kampf, J. W. (2007). J. Org. Chem. 72, 4135–4148.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q. R., Li, Z., Yang, H. Y., Li, F., Ding, Z. B. & Tao, F. G. (2003). Synthesis, pp. 1231–1235.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds