organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(3-chloro­phen­yl)benzamide

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: ssctng@sscu.iisc.ernet.in

(Received 11 August 2009; accepted 27 August 2009; online 12 September 2009)

The title compound, C13H9Cl2N, has an intra­molecular C—H⋯O close contact, and presents the NH group syn to the meta-chloro group in the aniline ring and trans to the C=O group. The crystal packing is formed by infinite chains of N—H⋯O hydrogen bonds along the c axis. Cl⋯Cl [3.474 (1) Å] contacts link chains. The crystal used for data collection was a twin, the domains related by the twin law 0.948 (1)/0.052 (1).

Related literature

For halogen inter­actions in the benzanilide series, see: Chopra & Guru Row (2005[Chopra, D. & Guru Row, T. N. (2005). J. Mol. Struct. 733, 133-141.], 2008[Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54-67.]); Saeed et al. (2008[Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934.]); Gowda et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1300.]). For Cl⋯Cl inter­actions, see: Bui et al. (2009[Bui, T. T. T., Dahaoui, S., Lacomte, C., Desiraju, G. R. & Espinosa, E. (2009). Angew. Chem. Int. Ed. 48, 3838-3841.]). For the program ROTAX, used to determine the twin law, see: Pearson & Gould (2003[Pearson, S. & Gould, B. (2003). ROTAX. University of Edinburgh, Scotland, with additions by R. Cooper (Oxford) & L. Farrugua (Glasgow).]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO

  • Mr = 266.11

  • Monoclinic, P 21 /c

  • a = 12.8696 (15) Å

  • b = 9.7485 (10) Å

  • c = 9.8243 (12) Å

  • β = 90.265 (11)°

  • V = 1232.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 292 K

  • 0.42 × 0.28 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Eos (Nova) detector

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.815, Tmax = 0.910

  • 13416 measured reflections

  • 2407 independent reflections

  • 1678 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.03

  • 2407 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.05 2.883 (2) 163
C13—H13⋯O1 0.93 2.34 2.868 (3) 116
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The Structure of 4-chloro-N-(3-chlorophenyl) benzamide is an extension of our previous work to evaluate the importance of interactions involving halogens in the benzanilide series (Chopra & Guru Row, 2005, 2008). The molecular structure prefers the N—H group to be trans to the CO group resulting in the formation of a C—H···O intramolecular interaction (Fig. 1, Table 1) similar to those found in the flourine compounds (Chopra & Guru Row, 2008; Saeed et al., 2008) (Figure 1). The NHCO group forms dihedral angles of 20.2 (2)and 21.5 (1)° with the aniline and benzoyl rings respectively. The two rings are nearly coplanar, with dihedral angle of 3.7 (2)°. The crystal packing is formed by infinite chains with N—H···O hydrogen bonds along the c axis (Figure 2, Table 1). Similar interactions were observed in the analogous chloro substituted benzanilides (Gowda et al., 2008; Saeed et al., 2008). There is a halogen Cl1···Cl1i contact (i): -x + 1, -y + 2, -z, (3.47 (1) Å, [Type-I, θ1=θ2=171.1 (2)°] (Bui et al., 2009) which links chains across an inversion centre, (Figure 2). In addition π···π stacking enhance the stability of the packing across the centres of symmetry .(Cg1···Cg1ii= 3.71 (2)Å, Cg2···Cg2iii = 3.77 (2)Å] ; (ii): 1-x,1-y,1-z ; (iii): -x,2-y,1-z; Cg1: centroid of the C1—>C6 ring; Cg2: centroid of the C8—>C13 ring).

Related literature top

For halogen interactions in the benzanilide series, see: Chopra & Guru Row (2005, 2008); Saeed et al. (2008); Gowda et al. (2008). For Cl···Cl interactions, see: Bui et al. (2009). For the program ROTAX, used to determine the twin law, see: Pearson & Gould (2003).

Experimental top

The title compound (Scheme) was prepared according to the literature method (Chopra & Guru Row, 2005). The purity of the compound was confirmed by infrared and NMR spectra. Single crystals were grown from ethanol at room temperature and used for X-ray diffraction study.

Refinement top

All H atoms were positioned geometrically, (C—H = 0.93 Å, N—H = 0.86 Å) and refined using a riding model with Uiso(H)= 1.2 Ueq(C, N). The crystal used for data collection was a twin, with twin law 1 0 0, 0 1 0, 0 0 1, as disclosed by ROTAX, Pearson & Gould (2003), and confirmed by refinement with the TWIN instruction in SHELXL97, Sheldrick (2008), leading to a distribution (BASF parameter) of 0.948/0.052 (1).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure shows the atom labelling Scheme with displacement ellipsoids for non-H atoms at 50% probability level, hydrogen atoms are arbitary circle. The dotted line shows the C—H···O intramolecular interactions.
[Figure 2] Fig. 2. : The molecular packing shows the infinite chain of N—H···O hydrogen bonds along c axis and Cl···Cl interactions as a linker between the chains.
4-Chloro-N-(3-chlorophenyl)benzamide top
Crystal data top
C13H9Cl2NOF(000) = 544
Mr = 266.11Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 350 reflections
a = 12.8696 (15) Åθ = 1.0–28.0°
b = 9.7485 (10) ŵ = 0.51 mm1
c = 9.8243 (12) ÅT = 292 K
β = 90.265 (11)°Plate, colorless
V = 1232.5 (2) Å30.42 × 0.28 × 0.19 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Eos (Nova) detector
2407 independent reflections
Radiation source: Enhance (Mo) X-ray Source1678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.815, Tmax = 0.910l = 1212
13416 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0559P)2]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H9Cl2NOV = 1232.5 (2) Å3
Mr = 266.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8696 (15) ŵ = 0.51 mm1
b = 9.7485 (10) ÅT = 292 K
c = 9.8243 (12) Å0.42 × 0.28 × 0.19 mm
β = 90.265 (11)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Eos (Nova) detector
2407 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1678 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.910Rint = 0.041
13416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2407 reflectionsΔρmin = 0.21 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.01097 (5)1.07010 (7)0.17348 (7)0.0830 (3)
Cl10.45841 (6)0.16654 (6)0.53117 (7)0.0811 (3)
O10.27955 (14)0.79207 (16)0.68009 (14)0.0682 (5)
N10.24298 (14)0.79496 (18)0.45618 (16)0.0512 (4)
H1N0.25310.75160.38120.061*
C70.28063 (16)0.7347 (2)0.56910 (19)0.0485 (5)
C10.32291 (15)0.5931 (2)0.55447 (18)0.0459 (5)
C90.12551 (16)0.9361 (2)0.3325 (2)0.0513 (5)
H90.12050.86620.26830.062*
C80.18891 (16)0.9205 (2)0.44516 (19)0.0464 (5)
C60.29668 (18)0.5044 (2)0.4485 (2)0.0561 (6)
H60.25100.53390.38100.067*
C20.39013 (18)0.5444 (2)0.6539 (2)0.0599 (6)
H20.40770.60100.72670.072*
C130.19596 (19)1.0256 (2)0.5399 (2)0.0602 (6)
H130.23851.01670.61620.072*
C30.43165 (19)0.4141 (2)0.6475 (2)0.0634 (6)
H30.47730.38360.71470.076*
C40.40478 (17)0.3300 (2)0.5410 (2)0.0559 (6)
C50.33695 (18)0.3742 (2)0.4418 (2)0.0602 (6)
H50.31850.31620.37050.072*
C110.0749 (2)1.1604 (2)0.4082 (3)0.0699 (7)
H110.03641.24030.39630.084*
C100.06962 (18)1.0554 (2)0.3151 (2)0.0577 (6)
C120.1386 (2)1.1438 (3)0.5190 (3)0.0748 (7)
H120.14341.21430.58250.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0831 (5)0.0747 (5)0.0911 (5)0.0067 (3)0.0221 (4)0.0229 (3)
Cl10.0923 (5)0.0617 (4)0.0892 (5)0.0194 (3)0.0156 (4)0.0071 (3)
O10.1067 (13)0.0635 (9)0.0343 (8)0.0055 (9)0.0007 (8)0.0038 (7)
N10.0644 (11)0.0550 (10)0.0343 (9)0.0082 (9)0.0023 (8)0.0031 (7)
C70.0550 (13)0.0561 (13)0.0344 (11)0.0050 (10)0.0026 (9)0.0013 (10)
C10.0491 (12)0.0533 (13)0.0351 (10)0.0028 (10)0.0013 (9)0.0045 (9)
C90.0556 (13)0.0462 (12)0.0520 (13)0.0034 (10)0.0010 (10)0.0026 (9)
C80.0492 (12)0.0462 (12)0.0439 (11)0.0008 (9)0.0080 (9)0.0015 (9)
C60.0640 (14)0.0567 (14)0.0475 (12)0.0033 (11)0.0149 (11)0.0039 (10)
C20.0721 (15)0.0671 (15)0.0402 (12)0.0010 (12)0.0125 (11)0.0003 (10)
C130.0698 (15)0.0545 (14)0.0562 (13)0.0013 (12)0.0024 (12)0.0046 (11)
C30.0696 (15)0.0708 (16)0.0497 (13)0.0078 (12)0.0142 (12)0.0146 (11)
C40.0595 (14)0.0525 (13)0.0557 (13)0.0053 (10)0.0036 (11)0.0106 (10)
C50.0723 (15)0.0546 (14)0.0536 (13)0.0021 (12)0.0141 (11)0.0016 (11)
C110.0802 (17)0.0479 (14)0.0816 (18)0.0108 (12)0.0045 (15)0.0070 (12)
C100.0582 (14)0.0512 (13)0.0638 (14)0.0002 (11)0.0019 (11)0.0132 (11)
C120.096 (2)0.0515 (15)0.0774 (17)0.0021 (14)0.0097 (16)0.0137 (13)
Geometric parameters (Å, º) top
Cl2—C101.738 (2)C6—H60.9300
Cl1—C41.740 (2)C2—C31.380 (3)
O1—C71.226 (2)C2—H20.9300
N1—C71.344 (2)C13—C121.384 (3)
N1—C81.412 (3)C13—H130.9300
N1—H1N0.8600C3—C41.373 (3)
C7—C11.491 (3)C3—H30.9300
C1—C21.385 (3)C4—C51.375 (3)
C1—C61.394 (3)C5—H50.9300
C9—C101.378 (3)C11—C121.369 (4)
C9—C81.381 (3)C11—C101.374 (3)
C9—H90.9300C11—H110.9300
C8—C131.386 (3)C12—H120.9300
C6—C51.372 (3)
C7—N1—C8128.18 (17)C12—C13—C8118.8 (2)
C7—N1—H1N115.9C12—C13—H13120.6
C8—N1—H1N115.9C8—C13—H13120.6
O1—C7—N1121.9 (2)C4—C3—C2119.22 (19)
O1—C7—C1120.94 (18)C4—C3—H3120.4
N1—C7—C1117.11 (17)C2—C3—H3120.4
C2—C1—C6117.5 (2)C3—C4—C5120.7 (2)
C2—C1—C7118.44 (18)C3—C4—Cl1119.41 (17)
C6—C1—C7124.01 (17)C5—C4—Cl1119.90 (18)
C10—C9—C8119.9 (2)C6—C5—C4119.6 (2)
C10—C9—H9120.1C6—C5—H5120.2
C8—C9—H9120.1C4—C5—H5120.2
C9—C8—C13119.6 (2)C12—C11—C10117.9 (2)
C9—C8—N1116.49 (18)C12—C11—H11121.0
C13—C8—N1123.91 (19)C10—C11—H11121.0
C5—C6—C1121.30 (19)C11—C10—C9121.5 (2)
C5—C6—H6119.4C11—C10—Cl2119.93 (18)
C1—C6—H6119.4C9—C10—Cl2118.53 (18)
C3—C2—C1121.6 (2)C11—C12—C13122.3 (2)
C3—C2—H2119.2C11—C12—H12118.9
C1—C2—H2119.2C13—C12—H12118.9
C8—N1—C7—O16.8 (3)C9—C8—C13—C120.2 (3)
C8—N1—C7—C1172.39 (18)N1—C8—C13—C12179.4 (2)
O1—C7—C1—C220.6 (3)C1—C2—C3—C40.8 (4)
N1—C7—C1—C2160.2 (2)C2—C3—C4—C50.3 (4)
O1—C7—C1—C6157.4 (2)C2—C3—C4—Cl1179.05 (18)
N1—C7—C1—C621.8 (3)C1—C6—C5—C40.2 (3)
C10—C9—C8—C130.2 (3)C3—C4—C5—C60.8 (4)
C10—C9—C8—N1179.50 (18)Cl1—C4—C5—C6178.57 (18)
C7—N1—C8—C9156.2 (2)C12—C11—C10—C90.6 (4)
C7—N1—C8—C1323.4 (3)C12—C11—C10—Cl2179.3 (2)
C2—C1—C6—C50.8 (3)C8—C9—C10—C110.3 (3)
C7—C1—C6—C5178.9 (2)C8—C9—C10—Cl2178.96 (16)
C6—C1—C2—C31.3 (3)C10—C11—C12—C130.6 (4)
C7—C1—C2—C3179.5 (2)C8—C13—C12—C110.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.052.883 (2)163
C13—H13···O10.932.342.868 (3)116
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)12.8696 (15), 9.7485 (10), 9.8243 (12)
β (°) 90.265 (11)
V3)1232.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.42 × 0.28 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Eos (Nova) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.815, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
13416, 2407, 1678
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.03
No. of reflections2407
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86002.05002.883 (2)163.00
C13—H13···O10.93002.34002.868 (3)116.00
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

We thank DST FIST (level II) for funding the XCalibur E Mova diffraction system. SKN thanks CSIR (SRF), INDIA, for financial support. We thank the referee for his valuable comments on handling the twinned crystal.

References

First citationBui, T. T. T., Dahaoui, S., Lacomte, C., Desiraju, G. R. & Espinosa, E. (2009). Angew. Chem. Int. Ed. 48, 3838–3841.  Web of Science CSD CrossRef CAS Google Scholar
First citationChopra, D. & Guru Row, T. N. (2005). J. Mol. Struct. 733, 133–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationChopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPearson, S. & Gould, B. (2003). ROTAX. University of Edinburgh, Scotland, with additions by R. Cooper (Oxford) & L. Farrugua (Glasgow).  Google Scholar
First citationSaeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds