metal-organic compounds
Poly[(μ3-5-bromonicotinato)(5-bromonicotinato)copper(II)]
aDepartment of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: thjchen@jnu.edu.cn
The title coordination polymer, [Cu(C6H3BrNO2)2]n, is composed of two structurally similar two-dimensional coordination polymers (twin layers). Both of them have the same chemical composition but they display different bond lengths and angles. In each layer, two N atoms and four carboxylate O atoms from the bridging 5-bromonicotinate ligands and four carboxylate O atoms from the terminal 5-bromonicotinate ligands bind to two CuII atoms to form a dinuclear paddle-wheel-like pattern. Adjacent paddle wheels are further linked by bridging 5-bromonicotinate groups to generate a two-dimensional coordination polymer; neighboring twin-like layers are finally stacked through π–π stacking interactions between adjacent pyridine rings [perpendicular distance of 3.626 (2) Å] in a `sandwich' manner, thus generating a three-dimensional supramolecular structure.
Related literature
For related literature on paddle-wheel secondary building units, see: Chen et al. (2006); Xue et al. (2007); Striegler & Dittel (2003); Ma & Moulton (2007); Banerjee et al. (2008); Saravanakumar et al. (2004). For similar structures, see: Yakovenko et al. (2009); Xue et al. (2007). For τ distortions of coordination polyhedra, see: Addison & Rao (1984).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809038331/bg2298sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809038331/bg2298Isup2.hkl
Copper nitrate trihydrate (0.4 mmol, 0.0966 g) in 10 ml water and 5-Bromonicotinic acid (0.4 mmol, 0.0808 g) were sealed in a Teflon-line autoclave and heated to 433 K for 72 h, after which the mixture was cooled down to room temperatureat at a rate of 5 K per hour. Blue single crystals suitable for x-ray crystallography analysis were obtained with a yield of 46 percent. IR (cm-1, KBr): 3447m, 3057w, 1639vs, 1557 s, 1443vs, 1393vs, 1292 s, 1238w, 1178w, 1143m, 1024m, 904w, 877m, 781 s, 747vs, 685m, 497 s.
Hydrogen atoms of the 5-bromonicotinato groups were placed at calculated positions and allowed to ride on their respective parent atoms with C—H distances in the range of 0.96–0.98 Å. The structure contains solvent accessible voids of 61 Å3 in its lattice, slightly larger than the threshold voids (40 Å3) for general accommodable water molecules. However, no trace of unaccounted for electron density could be detected in the difference maps, for what it can be safely assumed that any eventually trapped solvato molecules would not occupy stable positions.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C6H3BrNO2)2] | Z = 8 |
Mr = 465.55 | F(000) = 1784 |
Monoclinic, P21/c | Dx = 2.056 Mg m−3 |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 21.542 (4) Å | θ = 2.4–27.0° |
b = 11.746 (2) Å | µ = 6.78 mm−1 |
c = 12.271 (2) Å | T = 173 K |
β = 104.31 (3)° | Block, blue |
V = 3008.6 (9) Å3 | 0.33 × 0.31 × 0.23 mm |
Bruker SMART CCD area-detector diffractometer | 6502 independent reflections |
Radiation source: fine-focus sealed tube | 4904 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ϕ and ω scans | θmax = 27.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −27→15 |
Tmin = 0.213, Tmax = 0.305 | k = −12→15 |
15126 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0329P)2 + 6.737P] where P = (Fo2 + 2Fc2)/3 |
6502 reflections | (Δ/σ)max = 0.002 |
379 parameters | Δρmax = 1.40 e Å−3 |
0 restraints | Δρmin = −1.34 e Å−3 |
[Cu(C6H3BrNO2)2] | V = 3008.6 (9) Å3 |
Mr = 465.55 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 21.542 (4) Å | µ = 6.78 mm−1 |
b = 11.746 (2) Å | T = 173 K |
c = 12.271 (2) Å | 0.33 × 0.31 × 0.23 mm |
β = 104.31 (3)° |
Bruker SMART CCD area-detector diffractometer | 6502 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 4904 reflections with I > 2σ(I) |
Tmin = 0.213, Tmax = 0.305 | Rint = 0.031 |
15126 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.40 e Å−3 |
6502 reflections | Δρmin = −1.34 e Å−3 |
379 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.36048 (3) | 1.10765 (4) | 0.45763 (4) | 0.04098 (14) | |
Br2 | 0.22167 (2) | 0.26934 (6) | 0.04959 (4) | 0.04929 (17) | |
Br3 | 0.65085 (2) | 0.30249 (5) | −0.19347 (4) | 0.04179 (15) | |
Br4 | 1.13503 (3) | 0.60918 (5) | 0.58445 (4) | 0.05030 (18) | |
Cu1 | 0.48131 (2) | 0.52244 (4) | 0.59219 (4) | 0.01204 (10) | |
Cu2 | 1.02261 (2) | 0.48099 (4) | 0.10871 (4) | 0.01222 (10) | |
N1 | 0.46040 (15) | 0.5444 (3) | 0.7534 (3) | 0.0155 (7) | |
N2 | 0.20763 (17) | 0.4113 (4) | 0.3472 (3) | 0.0318 (9) | |
N3 | 1.04924 (15) | 0.4524 (3) | 0.2885 (3) | 0.0158 (7) | |
N4 | 0.76951 (19) | 0.2695 (4) | 0.1228 (3) | 0.0389 (10) | |
O1 | 0.39446 (13) | 0.4902 (3) | 0.5031 (2) | 0.0261 (7) | |
O2 | 0.57262 (12) | 0.5555 (3) | 0.6502 (2) | 0.0223 (6) | |
O3 | 0.49764 (14) | 0.3579 (2) | 0.6129 (2) | 0.0223 (6) | |
O4 | 0.46875 (13) | 0.6827 (2) | 0.5418 (2) | 0.0207 (6) | |
O5 | 1.04325 (13) | 0.3262 (2) | 0.0652 (2) | 0.0179 (6) | |
O6 | 0.99585 (14) | 0.6387 (2) | 0.1185 (2) | 0.0247 (7) | |
O7 | 0.93424 (13) | 0.4281 (3) | 0.0966 (2) | 0.0231 (6) | |
O8 | 1.10483 (13) | 0.5363 (2) | 0.0872 (2) | 0.0239 (7) | |
C1 | 0.48052 (18) | 0.7079 (3) | 0.4500 (3) | 0.0157 (8) | |
C2 | 0.46378 (17) | 0.8249 (3) | 0.4044 (3) | 0.0128 (7) | |
C3 | 0.42926 (18) | 0.9003 (3) | 0.4536 (3) | 0.0176 (8) | |
H3B | 0.4191 | 0.8821 | 0.5234 | 0.080* | |
C4 | 0.41056 (19) | 1.0027 (3) | 0.4004 (3) | 0.0205 (9) | |
C5 | 0.42629 (19) | 0.4721 (3) | 0.7994 (3) | 0.0198 (8) | |
H5A | 0.4144 | 0.4051 | 0.7657 | 0.050* | |
C6 | 0.47896 (17) | 0.6433 (3) | 0.8054 (3) | 0.0153 (8) | |
H6A | 0.5027 | 0.6896 | 0.7725 | 0.050* | |
C7 | 0.38534 (18) | 0.4560 (3) | 0.4041 (3) | 0.0169 (8) | |
C8 | 0.31838 (17) | 0.4236 (3) | 0.3453 (3) | 0.0175 (8) | |
C9 | 0.30550 (19) | 0.3730 (4) | 0.2396 (4) | 0.0241 (9) | |
H9A | 0.3388 | 0.3606 | 0.2015 | 0.080* | |
C10 | 0.24266 (19) | 0.3414 (4) | 0.1909 (3) | 0.0241 (9) | |
C11 | 0.19555 (19) | 0.3611 (4) | 0.2464 (4) | 0.0249 (9) | |
H11A | 0.1525 | 0.3381 | 0.2115 | 0.080* | |
C12 | 0.2679 (2) | 0.4414 (4) | 0.3946 (4) | 0.0260 (9) | |
H12A | 0.2769 | 0.4772 | 0.4672 | 0.080* | |
C13 | 0.89075 (18) | 0.4275 (3) | 0.0067 (3) | 0.0176 (8) | |
C14 | 0.82826 (18) | 0.3749 (3) | 0.0129 (3) | 0.0177 (8) | |
C15 | 0.77755 (19) | 0.3685 (3) | −0.0817 (3) | 0.0208 (9) | |
H15A | 0.7803 | 0.4012 | −0.1520 | 0.080* | |
C16 | 0.72308 (18) | 0.3128 (4) | −0.0705 (3) | 0.0226 (9) | |
C17 | 0.7203 (2) | 0.2648 (4) | 0.0305 (4) | 0.0325 (11) | |
H17A | 0.6817 | 0.2266 | 0.0354 | 0.080* | |
C18 | 0.8221 (2) | 0.3253 (4) | 0.1122 (4) | 0.0301 (10) | |
H18A | 0.8573 | 0.3313 | 0.1774 | 0.080* | |
C19 | 1.02976 (18) | 0.2986 (3) | −0.0370 (3) | 0.0152 (8) | |
C20 | 1.04662 (17) | 0.1814 (3) | −0.0668 (3) | 0.0132 (7) | |
C21 | 1.07623 (18) | 0.1035 (3) | 0.0149 (3) | 0.0154 (8) | |
H21A | 1.0841 | 0.1230 | 0.0950 | 0.050* | |
C22 | 1.09175 (19) | 0.5010 (3) | 0.4790 (3) | 0.0191 (8) | |
C23 | 1.07778 (18) | 0.5271 (3) | 0.3658 (3) | 0.0182 (8) | |
H23A | 1.0892 | 0.6007 | 0.3428 | 0.080* | |
C24 | 1.03400 (17) | 0.3506 (3) | 0.3220 (3) | 0.0151 (8) | |
H24A | 1.0114 | 0.2988 | 0.2626 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0617 (3) | 0.0352 (3) | 0.0350 (3) | 0.0291 (2) | 0.0292 (2) | 0.0086 (2) |
Br2 | 0.0306 (3) | 0.0809 (4) | 0.0360 (3) | −0.0217 (3) | 0.0076 (2) | −0.0310 (3) |
Br3 | 0.0203 (2) | 0.0719 (4) | 0.0300 (3) | −0.0167 (2) | 0.00016 (18) | −0.0005 (2) |
Br4 | 0.0942 (5) | 0.0338 (3) | 0.0177 (2) | −0.0389 (3) | 0.0040 (2) | −0.0080 (2) |
Cu1 | 0.0157 (2) | 0.0104 (2) | 0.0101 (2) | −0.00042 (17) | 0.00348 (17) | −0.00025 (17) |
Cu2 | 0.0160 (2) | 0.0096 (2) | 0.0094 (2) | −0.00019 (17) | 0.00013 (17) | −0.00022 (17) |
N1 | 0.0182 (16) | 0.0147 (18) | 0.0131 (15) | −0.0002 (12) | 0.0029 (13) | −0.0016 (13) |
N2 | 0.0186 (19) | 0.050 (3) | 0.026 (2) | 0.0006 (17) | 0.0042 (15) | −0.0037 (18) |
N3 | 0.0203 (17) | 0.0119 (17) | 0.0147 (16) | −0.0012 (12) | 0.0031 (13) | 0.0012 (12) |
N4 | 0.032 (2) | 0.060 (3) | 0.027 (2) | −0.011 (2) | 0.0113 (17) | 0.008 (2) |
O1 | 0.0174 (15) | 0.0376 (19) | 0.0224 (15) | −0.0036 (12) | 0.0032 (12) | −0.0094 (13) |
O2 | 0.0145 (14) | 0.0315 (17) | 0.0205 (15) | −0.0023 (12) | 0.0034 (11) | −0.0019 (12) |
O3 | 0.0369 (17) | 0.0149 (15) | 0.0186 (14) | 0.0039 (12) | 0.0136 (13) | 0.0021 (12) |
O4 | 0.0353 (17) | 0.0144 (15) | 0.0163 (14) | 0.0052 (12) | 0.0137 (12) | 0.0061 (11) |
O5 | 0.0270 (15) | 0.0137 (14) | 0.0112 (13) | 0.0033 (11) | 0.0016 (11) | −0.0041 (11) |
O6 | 0.0450 (18) | 0.0119 (15) | 0.0146 (14) | 0.0080 (13) | 0.0023 (13) | 0.0011 (11) |
O7 | 0.0167 (14) | 0.0336 (18) | 0.0182 (15) | −0.0019 (12) | 0.0032 (11) | −0.0022 (13) |
O8 | 0.0197 (15) | 0.0284 (18) | 0.0199 (15) | −0.0079 (12) | −0.0018 (11) | 0.0085 (12) |
C1 | 0.0186 (19) | 0.012 (2) | 0.0155 (19) | −0.0014 (15) | 0.0026 (15) | 0.0005 (15) |
C2 | 0.0133 (18) | 0.015 (2) | 0.0089 (17) | −0.0015 (14) | 0.0002 (13) | 0.0002 (14) |
C3 | 0.020 (2) | 0.017 (2) | 0.0148 (19) | −0.0020 (15) | 0.0037 (15) | 0.0015 (16) |
C4 | 0.026 (2) | 0.017 (2) | 0.022 (2) | 0.0073 (16) | 0.0133 (17) | −0.0017 (16) |
C5 | 0.027 (2) | 0.015 (2) | 0.018 (2) | −0.0065 (16) | 0.0073 (16) | −0.0065 (16) |
C6 | 0.0158 (19) | 0.013 (2) | 0.0171 (19) | 0.0023 (14) | 0.0038 (15) | 0.0000 (15) |
C7 | 0.019 (2) | 0.011 (2) | 0.020 (2) | 0.0009 (15) | 0.0044 (16) | 0.0032 (15) |
C8 | 0.0137 (19) | 0.018 (2) | 0.019 (2) | 0.0009 (15) | 0.0003 (15) | 0.0000 (16) |
C9 | 0.019 (2) | 0.029 (3) | 0.024 (2) | −0.0038 (17) | 0.0038 (17) | −0.0036 (18) |
C10 | 0.020 (2) | 0.030 (3) | 0.020 (2) | −0.0046 (17) | 0.0007 (17) | −0.0026 (18) |
C11 | 0.017 (2) | 0.031 (3) | 0.025 (2) | −0.0019 (17) | 0.0021 (17) | 0.0012 (19) |
C12 | 0.021 (2) | 0.034 (3) | 0.021 (2) | 0.0016 (18) | 0.0025 (17) | −0.0024 (19) |
C13 | 0.020 (2) | 0.0084 (19) | 0.026 (2) | 0.0012 (15) | 0.0073 (17) | −0.0038 (16) |
C14 | 0.020 (2) | 0.013 (2) | 0.020 (2) | −0.0019 (15) | 0.0047 (16) | −0.0020 (16) |
C15 | 0.021 (2) | 0.016 (2) | 0.025 (2) | −0.0002 (16) | 0.0051 (17) | −0.0003 (17) |
C16 | 0.016 (2) | 0.027 (2) | 0.023 (2) | −0.0009 (17) | 0.0006 (16) | −0.0026 (18) |
C17 | 0.025 (2) | 0.041 (3) | 0.033 (3) | −0.007 (2) | 0.011 (2) | 0.005 (2) |
C18 | 0.025 (2) | 0.046 (3) | 0.018 (2) | −0.005 (2) | 0.0044 (18) | 0.001 (2) |
C19 | 0.0194 (19) | 0.0101 (19) | 0.0167 (19) | −0.0020 (15) | 0.0055 (15) | −0.0018 (15) |
C20 | 0.0160 (18) | 0.0079 (19) | 0.0165 (19) | 0.0006 (14) | 0.0052 (14) | −0.0035 (14) |
C21 | 0.022 (2) | 0.015 (2) | 0.0075 (17) | 0.0018 (15) | 0.0015 (14) | −0.0012 (14) |
C22 | 0.028 (2) | 0.016 (2) | 0.0123 (18) | −0.0059 (16) | 0.0021 (16) | −0.0051 (15) |
C23 | 0.023 (2) | 0.013 (2) | 0.018 (2) | −0.0047 (15) | 0.0039 (16) | −0.0005 (16) |
C24 | 0.0185 (19) | 0.0119 (19) | 0.0139 (18) | 0.0004 (15) | 0.0019 (15) | 0.0010 (15) |
Br1—C4 | 1.885 (4) | C3—C4 | 1.380 (5) |
Br2—C10 | 1.881 (4) | C3—H3B | 0.9600 |
Br3—C16 | 1.885 (4) | C4—C5iii | 1.394 (5) |
Br4—C22 | 1.887 (4) | C5—C4iv | 1.394 (5) |
Cu1—O1 | 1.957 (3) | C5—H5A | 0.8971 |
Cu1—O2 | 1.958 (3) | C6—C2iv | 1.386 (5) |
Cu1—O3 | 1.969 (3) | C6—H6A | 0.9065 |
Cu1—O4 | 1.979 (3) | C7—O2i | 1.257 (5) |
Cu1—N1 | 2.150 (3) | C7—C8 | 1.494 (5) |
Cu1—Cu1i | 2.6355 (10) | C8—C12 | 1.385 (6) |
Cu2—O6 | 1.952 (3) | C8—C9 | 1.390 (6) |
Cu2—O8 | 1.965 (3) | C9—C10 | 1.389 (5) |
Cu2—O7 | 1.973 (3) | C9—H9A | 0.9601 |
Cu2—O5 | 1.976 (3) | C10—C11 | 1.375 (6) |
Cu2—N3 | 2.164 (3) | C11—H11A | 0.9599 |
Cu2—Cu2ii | 2.6423 (10) | C12—H12A | 0.9601 |
N1—C5 | 1.336 (5) | C13—O8ii | 1.254 (5) |
N1—C6 | 1.338 (5) | C13—C14 | 1.500 (5) |
N2—C12 | 1.333 (5) | C14—C15 | 1.385 (6) |
N2—C11 | 1.337 (5) | C14—C18 | 1.386 (6) |
N3—C23 | 1.327 (5) | C15—C16 | 1.379 (6) |
N3—C24 | 1.332 (5) | C15—H15A | 0.9600 |
N4—C18 | 1.343 (6) | C16—C17 | 1.376 (6) |
N4—C17 | 1.347 (6) | C17—H17A | 0.9601 |
O1—C7 | 1.247 (5) | C18—H18A | 0.9600 |
O2—C7i | 1.257 (5) | C19—O6ii | 1.254 (4) |
O3—C1i | 1.263 (5) | C19—C20 | 1.492 (5) |
O4—C1 | 1.250 (4) | C20—C24v | 1.376 (5) |
O5—C19 | 1.258 (4) | C20—C21 | 1.390 (5) |
O6—C19ii | 1.254 (4) | C21—C22v | 1.373 (5) |
O7—C13 | 1.258 (5) | C21—H21A | 0.9821 |
O8—C13ii | 1.254 (5) | C22—C21vi | 1.373 (5) |
C1—O3i | 1.263 (5) | C22—C23 | 1.381 (5) |
C1—C2 | 1.494 (5) | C23—H23A | 0.9600 |
C2—C6iii | 1.386 (5) | C24—C20vi | 1.376 (5) |
C2—C3 | 1.386 (5) | C24—H24A | 0.9814 |
O1—Cu1—O2 | 167.78 (12) | N1—C5—H5A | 119.1 |
O1—Cu1—O3 | 89.88 (13) | C4iv—C5—H5A | 119.5 |
O2—Cu1—O3 | 90.95 (12) | N1—C6—C2iv | 123.0 (4) |
O1—Cu1—O4 | 88.36 (13) | N1—C6—H6A | 116.4 |
O2—Cu1—O4 | 88.40 (12) | C2iv—C6—H6A | 120.7 |
O3—Cu1—O4 | 168.51 (11) | O1—C7—O2i | 126.1 (4) |
O1—Cu1—N1 | 98.55 (12) | O1—C7—C8 | 117.0 (3) |
O2—Cu1—N1 | 93.55 (12) | O2i—C7—C8 | 116.9 (3) |
O3—Cu1—N1 | 94.02 (11) | C12—C8—C9 | 118.3 (4) |
O4—Cu1—N1 | 97.47 (11) | C12—C8—C7 | 121.3 (4) |
O1—Cu1—Cu1i | 86.23 (9) | C9—C8—C7 | 120.4 (3) |
O2—Cu1—Cu1i | 81.90 (9) | C10—C9—C8 | 117.7 (4) |
O3—Cu1—Cu1i | 80.33 (8) | C10—C9—H9A | 121.1 |
O4—Cu1—Cu1i | 88.23 (8) | C8—C9—H9A | 121.2 |
N1—Cu1—Cu1i | 172.64 (9) | C11—C10—C9 | 120.1 (4) |
O6—Cu2—O8 | 89.09 (13) | C11—C10—Br2 | 119.6 (3) |
O6—Cu2—O7 | 90.52 (13) | C9—C10—Br2 | 120.3 (3) |
O8—Cu2—O7 | 168.27 (11) | N2—C11—C10 | 122.3 (4) |
O6—Cu2—O5 | 168.22 (11) | N2—C11—H11A | 118.9 |
O8—Cu2—O5 | 89.85 (12) | C10—C11—H11A | 118.8 |
O7—Cu2—O5 | 88.14 (12) | N2—C12—C8 | 123.7 (4) |
O6—Cu2—N3 | 95.31 (12) | N2—C12—H12A | 118.3 |
O8—Cu2—N3 | 99.66 (12) | C8—C12—H12A | 118.0 |
O7—Cu2—N3 | 92.04 (12) | O8ii—C13—O7 | 126.4 (4) |
O5—Cu2—N3 | 96.44 (11) | O8ii—C13—C14 | 117.3 (3) |
O6—Cu2—Cu2ii | 82.01 (8) | O7—C13—C14 | 116.2 (4) |
O8—Cu2—Cu2ii | 85.86 (9) | C15—C14—C18 | 119.1 (4) |
O7—Cu2—Cu2ii | 82.48 (9) | C15—C14—C13 | 120.8 (4) |
O5—Cu2—Cu2ii | 86.21 (8) | C18—C14—C13 | 120.0 (4) |
N3—Cu2—Cu2ii | 173.85 (9) | C16—C15—C14 | 117.2 (4) |
C5—N1—C6 | 118.8 (3) | C16—C15—H15A | 121.5 |
C5—N1—Cu1 | 125.1 (3) | C14—C15—H15A | 121.4 |
C6—N1—Cu1 | 115.9 (2) | C17—C16—C15 | 120.8 (4) |
C12—N2—C11 | 117.8 (4) | C17—C16—Br3 | 118.9 (3) |
C23—N3—C24 | 118.6 (3) | C15—C16—Br3 | 120.3 (3) |
C23—N3—Cu2 | 125.9 (3) | N4—C17—C16 | 122.7 (4) |
C24—N3—Cu2 | 115.5 (2) | N4—C17—H17A | 118.7 |
C18—N4—C17 | 116.5 (4) | C16—C17—H17A | 118.6 |
C7—O1—Cu1 | 120.4 (3) | N4—C18—C14 | 123.8 (4) |
C7i—O2—Cu1 | 125.2 (3) | N4—C18—H18A | 117.9 |
C1i—O3—Cu1 | 127.1 (2) | C14—C18—H18A | 118.3 |
C1—O4—Cu1 | 117.7 (2) | O6ii—C19—O5 | 126.2 (4) |
C19—O5—Cu2 | 119.7 (2) | O6ii—C19—C20 | 115.6 (3) |
C19ii—O6—Cu2 | 125.9 (3) | O5—C19—C20 | 118.2 (3) |
C13—O7—Cu2 | 124.3 (3) | C24v—C20—C21 | 118.6 (3) |
C13ii—O8—Cu2 | 120.8 (2) | C24v—C20—C19 | 119.6 (3) |
O4—C1—O3i | 126.5 (4) | C21—C20—C19 | 121.8 (3) |
O4—C1—C2 | 118.1 (3) | C22v—C21—C20 | 117.5 (3) |
O3i—C1—C2 | 115.2 (3) | C22v—C21—H21A | 122.2 |
C6iii—C2—C3 | 118.6 (3) | C20—C21—H21A | 120.3 |
C6iii—C2—C1 | 119.2 (3) | C21vi—C22—C23 | 120.7 (3) |
C3—C2—C1 | 122.0 (3) | C21vi—C22—Br4 | 120.0 (3) |
C4—C3—C2 | 118.4 (4) | C23—C22—Br4 | 119.2 (3) |
C4—C3—H3B | 120.8 | N3—C23—C22 | 121.4 (4) |
C2—C3—H3B | 120.8 | N3—C23—H23A | 119.5 |
C3—C4—C5iii | 119.9 (4) | C22—C23—H23A | 119.2 |
C3—C4—Br1 | 121.4 (3) | N3—C24—C20vi | 123.2 (3) |
C5iii—C4—Br1 | 118.7 (3) | N3—C24—H24A | 116.2 |
N1—C5—C4iv | 121.4 (4) | C20vi—C24—H24A | 120.5 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z; (iii) x, −y+3/2, z−1/2; (iv) x, −y+3/2, z+1/2; (v) x, −y+1/2, z−1/2; (vi) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H3BrNO2)2] |
Mr | 465.55 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 21.542 (4), 11.746 (2), 12.271 (2) |
β (°) | 104.31 (3) |
V (Å3) | 3008.6 (9) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 6.78 |
Crystal size (mm) | 0.33 × 0.31 × 0.23 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.213, 0.305 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15126, 6502, 4904 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.640 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.085, 1.03 |
No. of reflections | 6502 |
No. of parameters | 379 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.40, −1.34 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by the Natural Science Foundation of Guangdong Province (grant No. 0430064), People's Republic of China.
References
Addison, A. W. & Rao, T. N. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Banerjee, A., Sarkar, S., Chopra, D., Colacio, E. & Rajak, K. K. (2008). Inorg. Chem. 47, 4023–4031. Web of Science CSD CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, B. L., Fronczek, F. R., Courtney, B. H. & Zapata, F. (2006). Cryst. Growth Des. 6, 825–828. Web of Science CrossRef CAS Google Scholar
Ma, Z.-B. & Moulton, B. (2007). Mol. Pharm. 4, 373–385. Web of Science CSD CrossRef PubMed CAS Google Scholar
Saravanakumar, D., Sengottuvelan, N., Narayanan, V., Kandaswamy, M., Chinnakali, K., Senthilkumar, G. & Fun, H.-K. (2004). Eur. J. Inorg. Chem. pp. 872–878. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Striegler, S. & Dittel, M. (2003). J. Am. Chem. Soc. 125, 11518–11524. Web of Science CrossRef PubMed CAS Google Scholar
Xue, D.-X., Lin, Y.-Y., Cheng, X.-N. & Chen, X.-M. (2007). Cryst. Growth Des. 7, 1332–1336. Web of Science CSD CrossRef CAS Google Scholar
Yakovenko, A. V., Kolotilov, S. V., Cador, O., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2009). Eur. J. Inorg. Chem. pp. 2354–2361. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Paddle-wheel secondary building units (SBUs) M2(RCOO)4 are useful building blocks for constructing complexes and 1D to 3D coordination polymers through bifunctional ligands. Research interest in these compounds with copper(II) paddle-wheel SBUs come from their structural diversity (Chen, et al., 2006; Xue et al., 2007) and potential applications in supramolecular medicinal chemistry (Ma & Moulton 2007), sugar discrimination (Striegler & Dittel 2003), molecular magnets (Banerjee et al., 2008; Saravanakumar et al., 2004; Yakovenko, et al., 2009), respectively. However, most reported Cu(II) complexes with paddle-whell secondary building units are constructed by mixed-ligands, either two kinds of organic ligands or one organic ligand and water molecules (Ma & Moulton 2007). 5-Bromonicotinic acid is a bifunctional ligand with two carboxylic oxygen atoms and one pyridyl nitrogen atom, and it can be coordinated to a metal centre in a variety of ways to create structural diversity. Here, we report a new two-dimentional coordination polymer with Cu(II) paddle-wheel SBUs formed from the organic ligand 5-Bromonicotinic acid and Cu(II) ions.
The title coordination polymer, twin-poly[copper(II) (η-N,O,O-5-bromonicotinato)(η-O,O-5-bromonicotinato)] (I), contains two similar, independent groups in the asymmetric unit consisting of two copper atoms (Cu1 and Cu2) and four 5-bromonicotinato ligands each. The coordination enviroments of the two copper atoms present a nearly perfect [CuO4N] square pyramid geometry, characterized by τ factors (indicative of the distortion degree of such a coordination sphere, Addison & Rao, 1984), of 0.01 for Cu1 and 0.003 for Cu2. The bond lengths and angles around Cu1 and Cu2 are standard for a Jahn-Teller active square pyramidal Cu2+ ion, with basal Cu—O bond lengths ranging from 1.957 (3) Å to 1.979 (3) Å (1.952 (3)–1.976 (3) Å ) and a longer axial bond distance to the the ligand nitrogen atom of 2.150 (3) Å (2.164 (3) Å) for Cu1 (Cu2), respectively (Fig. 1).
As previously stated, each copper atom (Cu1 or Cu2) is located in a penta-coordinated geometry and is bonded by four oxygen atoms from carboxylate anions and one nitrogen atom from the axial ligand, which can also be considered as a molecular square when viewed along the axial direction. When four carboxylate groups of the ligands bridge to two asymmetric copper atoms in a syn-syn manner, a dinuclear paddle-wheel pattern is formed, with Cu—Cu distances of 2.6355 (10) Å for Cu1 and 2.6423 (10) Å for Cu2. These values are similar to those in the paddle-wheel copper(II) complex reported in Yakovenko, et al. 2009, but shorter than the corresponding ones in Xue et al. 2007.
When adjacent Cu1 paddle-wheels are bridged by the η-N,O,O-5-bromonicotinato groups, a layer motif (hereafter "A", [Cu1(η-N,O,O-5-bromonicotinato)(η-O,O-5-bromonicotinato)]n ), is formed along (100). Similarly, those resulting from Cu2 generate another layer motif ( "B", [Cu2(η-N,O,O-5-bromonicotinato)(η-O,O-5-bromonicotinato)]n) which lies parallel to the former (Fig. 2). Finally, both A and B layers contact along the c axial direction generating a new, twin-like coordination polymer (Fig. 3). Neighboring twin-like layers are further stacked via van der Waals interactions in a sandwich way extending the packing into a three-dimensional supramolecular structure. No significant hydrogen bonds were found in the crystal structure.