metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(2,2′-bi­pyridine)manganese(II)]-μ-5-meth­oxy­iso­phthalato-κ3O,O′:O′′] monohydrate]

aDepartment of Applied Engineering, Zhejiang Economic and Trade Polytechnic, 310018 Hangzhou, People's Republic of China
*Correspondence e-mail: zjssm01@126.com

(Received 30 August 2009; accepted 2 September 2009; online 5 September 2009)

In the title compound, {[Mn(C8H4O4)(C10H8N2)(H2O)]·H2O}n, the MnII centre is octa­hedrally coordinated by three O atoms from two 5-methoxy­isophthalate (CH3O-ip) ligands, a fourth from a coordinated water mol­ecule and two N atoms from one chelating 2,2′-bipyridine (2,2-bipy) ligand. Each pair of adjacent MnII atoms is bridged by a CH3O-ip ligand, forming a helical chain running along a crystallographic 21 axis in the c-axis direction. These chains are decorated with 2,2′-bipy ligands on alternating sides. O—H⋯O hydrogen bonding involving the water molecules stabilizes the crystal structure.

Related literature

For related structures, see: Chen & Liu, (2002[Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811-4817.]); Liu et al. (2009[Liu, J. Q., Wang, Y. Y., Zhang, Y. N., Liu, P., Shi, Q. Z. & Batten, S. R. (2009). Eur. J. Inorg. Chem. pp. 147-154.]). For the design and controlled synthesis of metal-organic frameworks, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For the use of 5-methoxy­isophthalic acid in synthesis of self-asssembly of porous coord­in­ation compounds, see: Ma et al. (2009[Ma, L. F., Wang, Y. Y., Liu, J. Q., Yang, G. P., Du, M. & Wang, L. Y. (2009). CrystEngComm, 11, 1800-1802.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H4O4)(C10H8N2)(H2O)]·H2O

  • Mr = 441.29

  • Monoclinic, P 21 /c

  • a = 8.9067 (13) Å

  • b = 17.367 (3) Å

  • c = 12.5804 (18) Å

  • β = 97.176 (2)°

  • V = 1930.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 298 K

  • 0.19 × 0.14 × 0.09 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.874, Tmax = 0.937

  • 11370 measured reflections

  • 3470 independent reflections

  • 2275 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.091

  • S = 1.02

  • 3470 reflections

  • 275 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1W⋯O7i 0.837 (17) 1.832 (18) 2.668 (4) 178 (4)
O6—H2W⋯O3ii 0.846 (17) 1.888 (19) 2.726 (3) 171 (3)
O7—H3W⋯O2iii 0.839 (18) 1.90 (2) 2.724 (3) 169 (4)
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Much effort has been focused on the design and controlled synthesis of metal-organic frameworks (Kitagawa et al., 2004). Polycarboxylate ligands have received considerable attention, owing to the variety of their coordination modes and structural features. 5-Methoxyisophthalic acid is a potential multi-dentate ligand with a versatile coordination mode, which has been used in self-asssembled porous coordination synthesis (Ma et al., 2009). The title compound, (I), was constructed by two kinds of bridging and chelating ligands under mild condition, CH3O-ip and 2,2'-bipy which were self-assembled to a one-dimensional neutral metal-organic compound. In this paper, the crystal structure of (I) is presented.

As illustrated in Fig. 1, MnII adopts a distorted octahedral geometry, generated by three O atoms from one bidenated-chelating carboxylate and one monodenated carboxylate group from two adjacent CH3O-ip, a fourth O from a coordinated water molecule, and two N atoms from one chelating 2,2-bipy ligand. The four atoms (O1, O2, O4 and N2) in the equatorial plane around the Mn atom form a highly distorted square-planar arrangement, while the distorted octahedral coordination is completed by the N atom of 2,2-bipy (N1) and the O atom of the water molecule (O6) in the axial positions.

The neighboring Mn atoms are linked by CH3O-ip ligands forming a one-dimensional helical chain running along a crystallographic 21 axis in the c-direction (Fig. 2). These chains are decorated with 2,2'-bipy ligands alternating at both sides, which is similar to some already reported complexes (Chen & Liu, 2002; Liu et al., 2009 ). There are no remarkable π-π interactions between rings of 2,2'-bipy ligands due to its transplacement arrange.

In the crystal structure, strong intermolecular O-H···O hydrogen bonds (Table 2) link the molecules into a 2D network.

Related literature top

For related structures, see: Chen & Liu, (2002); Liu et al. (2009). For the design and controlled synthesis of metal-organic frameworks, see: Kitagawa et al. (2004). For the use of 5-methoxyisophthalic acid in self-asssembled porous coordination synthesis, see: Ma et al. (2009).

Experimental top

The title compound was obtained by direct mixing of equimolar (21mg, 0.1mmol)) Mn(AC)2 water solution (4mL) and CH3O-H2ip (20mg, 0.1mmol), 2,2'-bipy (0.19mg, 0.1mmol) and NaOH (3.8mg, 0.09mmol) 96% methanol solutions (10mL). After a few days, some crystalline material had precipitated, but it was found to be unsuitable for X-ray diffraction. This material was therefore dissolved in water and heated at 398 K for 3 h in a pressurized reactor. Slow evaporation of this solution resulted in the formation of some block crystals of (I), which were suitable for X-ray analysis.

Refinement top

All H atoms attached to C atoms were placed geometrically and treated as riding with C—H = 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (2)Å and H···H= 1.38 (2)Å) with Uiso(H) = 1.5Ueq(O). The highest residual difference electron-density peak occurs close to atom O1 with 1.17Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of (I), showing the atom-labeling scheme. Ellipsoids are drawn at the the 30% probability level. Symmetry codes: (i) 2-x, y-1/2, 3/2-z; (ii) 2-x, y+1/2, 3/2-z
[Figure 2] Fig. 2. A partial packing virçew of the title compounds, showing the formation of a chain along c axis.
catena-Poly[[[aqua(2,2'-bipyridine)manganese(II)]-µ-5- methoxyisophthalato-κ3O,O':O''] monohydrate] top
Crystal data top
[Mn(C8H4O4)(C10H8N2)(H2O)]·H2OF(000) = 908
Mr = 441.29Dx = 1.518 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3462 reflections
a = 8.9067 (13) Åθ = 2.6–25.2°
b = 17.367 (3) ŵ = 0.73 mm1
c = 12.5804 (18) ÅT = 298 K
β = 97.176 (2)°Block, yellow
V = 1930.7 (5) Å30.19 × 0.14 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3470 independent reflections
Radiation source: fine-focus sealed tube2275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 25.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.874, Tmax = 0.937k = 2020
11370 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0276P)2 + 0.6024P]
where P = (Fo2 + 2Fc2)/3
3470 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.26 e Å3
6 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Mn(C8H4O4)(C10H8N2)(H2O)]·H2OV = 1930.7 (5) Å3
Mr = 441.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9067 (13) ŵ = 0.73 mm1
b = 17.367 (3) ÅT = 298 K
c = 12.5804 (18) Å0.19 × 0.14 × 0.09 mm
β = 97.176 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3470 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2275 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.937Rint = 0.061
11370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.26 e Å3
3470 reflectionsΔρmin = 0.29 e Å3
275 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.86083 (5)0.64881 (3)0.57766 (4)0.03184 (15)
O10.7990 (3)0.77011 (13)0.48474 (19)0.0610 (8)
O20.9562 (3)0.76311 (12)0.63126 (18)0.0498 (7)
O31.0696 (2)1.00516 (13)0.85451 (17)0.0443 (6)
O41.0246 (3)1.11522 (13)0.77017 (18)0.0507 (7)
O50.6696 (3)1.04731 (14)0.43566 (19)0.0708 (9)
N10.6456 (3)0.66681 (15)0.6502 (2)0.0391 (7)
N20.6681 (3)0.60012 (15)0.4629 (2)0.0337 (6)
C10.8656 (4)0.88801 (18)0.5761 (3)0.0330 (8)
C20.9443 (3)0.92408 (18)0.6647 (2)0.0332 (8)
H21.00490.89520.71550.040*
C30.9327 (3)1.00281 (18)0.6774 (2)0.0310 (7)
C40.8419 (4)1.04587 (19)0.6018 (3)0.0418 (9)
H40.83431.09890.61020.050*
C50.7631 (4)1.0102 (2)0.5143 (3)0.0453 (9)
C60.7755 (4)0.93092 (18)0.5017 (3)0.0417 (9)
H60.72250.90680.44250.050*
C70.8744 (4)0.80229 (19)0.5621 (3)0.0402 (9)
C81.0148 (3)1.0427 (2)0.7738 (3)0.0348 (8)
C90.6513 (6)1.1283 (2)0.4467 (3)0.0872 (17)
H9A0.61161.13890.51270.131*
H9B0.58241.14730.38780.131*
H9C0.74751.15320.44710.131*
C100.6399 (4)0.7003 (2)0.7453 (3)0.0499 (10)
H100.73090.71320.78600.060*
C110.5089 (4)0.7168 (2)0.7862 (3)0.0554 (10)
H110.51070.74070.85260.067*
C120.3748 (4)0.6973 (2)0.7273 (3)0.0607 (11)
H120.28350.70730.75330.073*
C130.3765 (4)0.6624 (2)0.6285 (3)0.0527 (10)
H130.28620.64920.58720.063*
C140.5131 (3)0.64735 (19)0.5918 (2)0.0348 (8)
C150.5263 (3)0.60952 (18)0.4878 (2)0.0317 (8)
C160.4026 (4)0.5843 (2)0.4195 (3)0.0468 (9)
H160.30560.59030.43830.056*
C170.4231 (4)0.5504 (2)0.3238 (3)0.0532 (10)
H170.34030.53390.27690.064*
C180.5661 (4)0.5414 (2)0.2983 (3)0.0523 (10)
H180.58290.51870.23380.063*
C190.6858 (4)0.5666 (2)0.3703 (3)0.0457 (9)
H190.78360.55980.35310.055*
O61.0261 (3)0.62274 (13)0.47247 (18)0.0421 (6)
H1W1.037 (4)0.6603 (12)0.432 (2)0.063*
H2W1.033 (4)0.5804 (11)0.440 (2)0.063*
O70.0671 (3)0.74055 (16)0.3430 (2)0.0584 (7)
H3W0.041 (4)0.734 (2)0.2772 (16)0.088*
H4W0.016 (4)0.7774 (18)0.364 (3)0.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0319 (3)0.0319 (3)0.0307 (3)0.0004 (2)0.0002 (2)0.0032 (2)
O10.098 (2)0.0369 (15)0.0428 (15)0.0028 (14)0.0116 (15)0.0114 (13)
O20.0714 (17)0.0300 (14)0.0447 (15)0.0034 (12)0.0057 (13)0.0006 (12)
O30.0495 (15)0.0450 (15)0.0357 (14)0.0025 (12)0.0049 (11)0.0000 (12)
O40.0683 (17)0.0278 (14)0.0521 (16)0.0073 (12)0.0081 (13)0.0043 (12)
O50.107 (2)0.0441 (16)0.0505 (16)0.0136 (16)0.0334 (16)0.0026 (14)
N10.0396 (16)0.0476 (18)0.0297 (16)0.0028 (14)0.0037 (13)0.0038 (14)
N20.0332 (15)0.0381 (17)0.0299 (15)0.0007 (13)0.0046 (12)0.0070 (13)
C10.047 (2)0.0278 (17)0.0244 (17)0.0025 (16)0.0053 (15)0.0002 (15)
C20.0362 (19)0.033 (2)0.0303 (19)0.0003 (15)0.0046 (15)0.0053 (15)
C30.0375 (18)0.0296 (19)0.0264 (18)0.0064 (15)0.0063 (14)0.0025 (15)
C40.058 (2)0.0267 (18)0.039 (2)0.0013 (17)0.0033 (18)0.0013 (16)
C50.062 (2)0.039 (2)0.032 (2)0.0034 (18)0.0067 (18)0.0023 (17)
C60.060 (2)0.030 (2)0.032 (2)0.0023 (17)0.0035 (18)0.0043 (16)
C70.056 (2)0.033 (2)0.033 (2)0.0039 (18)0.0117 (18)0.0007 (17)
C80.0336 (19)0.036 (2)0.036 (2)0.0019 (16)0.0068 (16)0.0061 (17)
C90.140 (5)0.044 (3)0.065 (3)0.029 (3)0.036 (3)0.000 (2)
C100.050 (2)0.066 (3)0.034 (2)0.001 (2)0.0065 (18)0.0099 (19)
C110.065 (3)0.066 (3)0.037 (2)0.013 (2)0.017 (2)0.006 (2)
C120.050 (2)0.079 (3)0.058 (3)0.015 (2)0.024 (2)0.000 (2)
C130.037 (2)0.071 (3)0.050 (2)0.006 (2)0.0069 (17)0.004 (2)
C140.0328 (17)0.0364 (19)0.0352 (19)0.0041 (16)0.0035 (15)0.0046 (17)
C150.0284 (18)0.0344 (19)0.0323 (19)0.0017 (14)0.0035 (14)0.0018 (15)
C160.0317 (19)0.067 (3)0.041 (2)0.0044 (18)0.0006 (16)0.007 (2)
C170.047 (2)0.069 (3)0.041 (2)0.015 (2)0.0054 (18)0.011 (2)
C180.050 (2)0.068 (3)0.038 (2)0.006 (2)0.0030 (19)0.016 (2)
C190.038 (2)0.060 (3)0.040 (2)0.0013 (18)0.0044 (17)0.0136 (19)
O60.0435 (14)0.0394 (14)0.0444 (16)0.0025 (13)0.0090 (12)0.0006 (12)
O70.0654 (19)0.0565 (19)0.0529 (17)0.0004 (14)0.0060 (15)0.0046 (15)
Geometric parameters (Å, º) top
Mn1—O4i2.135 (2)C5—C61.392 (4)
Mn1—O62.147 (2)C6—H60.9300
Mn1—O22.230 (2)C9—H9A0.9600
Mn1—N12.246 (3)C9—H9B0.9600
Mn1—N22.264 (2)C9—H9C0.9600
Mn1—O12.439 (2)C10—C111.364 (5)
O1—C71.244 (4)C10—H100.9300
O2—C71.261 (4)C11—C121.368 (5)
O3—C81.254 (4)C11—H110.9300
O4—C81.263 (4)C12—C131.384 (5)
O4—Mn1ii2.135 (2)C12—H120.9300
O5—C51.372 (4)C13—C141.379 (4)
O5—C91.424 (4)C13—H130.9300
N1—C101.337 (4)C14—C151.482 (4)
N1—C141.353 (4)C15—C161.381 (4)
N2—C191.330 (4)C16—C171.373 (5)
N2—C151.349 (4)C16—H160.9300
C1—C61.375 (4)C17—C181.361 (5)
C1—C21.389 (4)C17—H170.9300
C1—C71.502 (4)C18—C191.381 (4)
C2—C31.382 (4)C18—H180.9300
C2—H20.9300C19—H190.9300
C3—C41.388 (4)O6—H1W0.837 (17)
C3—C81.504 (4)O6—H2W0.846 (17)
C4—C51.376 (4)O7—H3W0.839 (18)
C4—H40.9300O7—H4W0.847 (18)
O4i—Mn1—O6101.98 (9)O2—C7—C1119.2 (3)
O4i—Mn1—O281.42 (9)O3—C8—O4121.7 (3)
O6—Mn1—O296.29 (9)O3—C8—C3120.9 (3)
O4i—Mn1—N190.59 (9)O4—C8—C3117.4 (3)
O6—Mn1—N1164.94 (9)O5—C9—H9A109.5
O2—Mn1—N193.75 (9)O5—C9—H9B109.5
O4i—Mn1—N2135.16 (10)H9A—C9—H9B109.5
O6—Mn1—N292.96 (9)O5—C9—H9C109.5
O2—Mn1—N2139.02 (9)H9A—C9—H9C109.5
N1—Mn1—N272.15 (9)H9B—C9—H9C109.5
O4i—Mn1—O1136.04 (9)N1—C10—C11124.0 (3)
O6—Mn1—O191.03 (9)N1—C10—H10118.0
O2—Mn1—O155.30 (8)C11—C10—H10118.0
N1—Mn1—O185.48 (9)C10—C11—C12118.3 (3)
N2—Mn1—O184.78 (9)C10—C11—H11120.9
C7—O1—Mn186.9 (2)C12—C11—H11120.9
C7—O2—Mn196.11 (19)C11—C12—C13119.2 (4)
C8—O4—Mn1ii105.5 (2)C11—C12—H12120.4
C5—O5—C9117.4 (3)C13—C12—H12120.4
C10—N1—C14117.8 (3)C14—C13—C12119.5 (3)
C10—N1—Mn1123.6 (2)C14—C13—H13120.2
C14—N1—Mn1118.4 (2)C12—C13—H13120.2
C19—N2—C15118.3 (3)N1—C14—C13121.1 (3)
C19—N2—Mn1124.0 (2)N1—C14—C15115.5 (3)
C15—N2—Mn1117.7 (2)C13—C14—C15123.4 (3)
C6—C1—C2119.7 (3)N2—C15—C16121.0 (3)
C6—C1—C7119.5 (3)N2—C15—C14116.0 (3)
C2—C1—C7120.8 (3)C16—C15—C14123.0 (3)
C3—C2—C1120.1 (3)C17—C16—C15119.9 (3)
C3—C2—H2119.9C17—C16—H16120.0
C1—C2—H2119.9C15—C16—H16120.0
C2—C3—C4119.9 (3)C18—C17—C16119.2 (3)
C2—C3—C8120.9 (3)C18—C17—H17120.4
C4—C3—C8119.1 (3)C16—C17—H17120.4
C5—C4—C3120.1 (3)C17—C18—C19118.5 (3)
C5—C4—H4120.0C17—C18—H18120.7
C3—C4—H4120.0C19—C18—H18120.7
O5—C5—C4124.6 (3)N2—C19—C18123.2 (3)
O5—C5—C6115.6 (3)N2—C19—H19118.4
C4—C5—C6119.8 (3)C18—C19—H19118.4
C1—C6—C5120.4 (3)Mn1—O6—H1W110 (2)
C1—C6—H6119.8Mn1—O6—H2W125 (2)
C5—C6—H6119.8H1W—O6—H2W112 (3)
O1—C7—O2120.4 (3)H3W—O7—H4W108 (3)
O1—C7—C1120.4 (3)
O4i—Mn1—O1—C75.0 (3)O5—C5—C6—C1179.7 (3)
O6—Mn1—O1—C7103.5 (2)C4—C5—C6—C10.2 (5)
O2—Mn1—O1—C76.56 (19)Mn1—O1—C7—O211.1 (3)
N1—Mn1—O1—C791.2 (2)Mn1—O1—C7—C1167.1 (3)
N2—Mn1—O1—C7163.6 (2)Mn1—O2—C7—O112.2 (4)
O4i—Mn1—O2—C7165.4 (2)Mn1—O2—C7—C1166.0 (3)
O6—Mn1—O2—C793.4 (2)C6—C1—C7—O11.1 (5)
N1—Mn1—O2—C775.4 (2)C2—C1—C7—O1177.2 (3)
N2—Mn1—O2—C78.5 (3)C6—C1—C7—O2179.3 (3)
O1—Mn1—O2—C76.50 (19)C2—C1—C7—O21.0 (5)
O4i—Mn1—N1—C1041.7 (3)Mn1ii—O4—C8—O31.6 (4)
O6—Mn1—N1—C10171.5 (3)Mn1ii—O4—C8—C3177.8 (2)
O2—Mn1—N1—C1039.8 (3)C2—C3—C8—O314.7 (5)
N2—Mn1—N1—C10179.6 (3)C4—C3—C8—O3164.0 (3)
O1—Mn1—N1—C1094.5 (3)C2—C3—C8—O4166.0 (3)
O4i—Mn1—N1—C14142.8 (2)C4—C3—C8—O415.4 (4)
O6—Mn1—N1—C144.0 (5)C14—N1—C10—C110.8 (5)
O2—Mn1—N1—C14135.8 (2)Mn1—N1—C10—C11174.8 (3)
N2—Mn1—N1—C144.9 (2)N1—C10—C11—C120.7 (6)
O1—Mn1—N1—C1481.0 (2)C10—C11—C12—C130.6 (6)
O4i—Mn1—N2—C19107.3 (3)C11—C12—C13—C140.6 (6)
O6—Mn1—N2—C193.0 (3)C10—N1—C14—C130.8 (5)
O2—Mn1—N2—C19106.1 (3)Mn1—N1—C14—C13175.0 (3)
N1—Mn1—N2—C19179.3 (3)C10—N1—C14—C15179.2 (3)
O1—Mn1—N2—C1993.7 (3)Mn1—N1—C14—C155.0 (4)
O4i—Mn1—N2—C1576.3 (3)C12—C13—C14—N10.7 (5)
O6—Mn1—N2—C15173.4 (2)C12—C13—C14—C15179.3 (3)
O2—Mn1—N2—C1570.3 (3)C19—N2—C15—C160.6 (5)
N1—Mn1—N2—C154.3 (2)Mn1—N2—C15—C16177.2 (2)
O1—Mn1—N2—C1582.6 (2)C19—N2—C15—C14179.9 (3)
C6—C1—C2—C30.4 (5)Mn1—N2—C15—C143.3 (4)
C7—C1—C2—C3178.7 (3)N1—C14—C15—N21.0 (4)
C1—C2—C3—C40.2 (5)C13—C14—C15—N2178.9 (3)
C1—C2—C3—C8178.9 (3)N1—C14—C15—C16178.4 (3)
C2—C3—C4—C50.2 (5)C13—C14—C15—C161.6 (5)
C8—C3—C4—C5178.5 (3)N2—C15—C16—C171.2 (5)
C9—O5—C5—C41.1 (6)C14—C15—C16—C17179.3 (3)
C9—O5—C5—C6178.7 (4)C15—C16—C17—C180.8 (6)
C3—C4—C5—O5179.5 (3)C16—C17—C18—C190.1 (6)
C3—C4—C5—C60.4 (5)C15—N2—C19—C180.4 (5)
C2—C1—C6—C50.2 (5)Mn1—N2—C19—C18176.0 (3)
C7—C1—C6—C5178.6 (3)C17—C18—C19—N20.8 (6)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1W···O7iii0.84 (2)1.83 (2)2.668 (4)178 (4)
O6—H2W···O3iv0.85 (2)1.89 (2)2.726 (3)171 (3)
O7—H3W···O2v0.84 (2)1.90 (2)2.724 (3)169 (4)
Symmetry codes: (iii) x+1, y, z; (iv) x, y+3/2, z1/2; (v) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C8H4O4)(C10H8N2)(H2O)]·H2O
Mr441.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.9067 (13), 17.367 (3), 12.5804 (18)
β (°) 97.176 (2)
V3)1930.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.19 × 0.14 × 0.09
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.874, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
11370, 3470, 2275
Rint0.061
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.091, 1.02
No. of reflections3470
No. of parameters275
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1W···O7i0.837 (17)1.832 (18)2.668 (4)178 (4)
O6—H2W···O3ii0.846 (17)1.888 (19)2.726 (3)171 (3)
O7—H3W···O2iii0.839 (18)1.90 (2)2.724 (3)169 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2; (iii) x1, y+3/2, z1/2.
 

Acknowledgements

The authors are grateful to the Zhejiang Economic and Trade Polytechnic for financial support. Professor Jean-Claude Daran is thanked for his great help with the refinement.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811–4817.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLiu, J. Q., Wang, Y. Y., Zhang, Y. N., Liu, P., Shi, Q. Z. & Batten, S. R. (2009). Eur. J. Inorg. Chem. pp. 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, L. F., Wang, Y. Y., Liu, J. Q., Yang, G. P., Du, M. & Wang, L. Y. (2009). CrystEngComm, 11, 1800–1802.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds