metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[calcium-bis­­[μ-N-(di­methyl­phosphino­yl)benzene­sulfonamidato]]

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and bSTC "Institute for Single Crystals", 60 Lenina ave., Khar'kov 61001, Ukraine
*Correspondence e-mail: elizaveta@univ.kiev.ua

(Received 10 June 2009; accepted 18 August 2009; online 19 September 2009)

The crystal structure of the title calcium complex, [Ca(C8H11NO5PS)2]n, is composed of a polymeric chain, which is formed due to two bridging sulfonyl groups linking CaII ions in a O—S—O—Ca manner. Thus, the coordination environment of the CaII ions is composed of six O atoms belonging to the phosphoryl and sulfonyl groups of two chelate rings and two additional O atoms of two bridging sulfonyl groups. The coordination polyhedron of the central atom (2 symmetry) has a distorted octa­hedral geometry.

Related literature

For general background see: Wojtczak et al. (1996[Wojtczak, W. A., Fleig, F. & Hampden-Smith, M. J. (1996). Adv. Organomet. Chem. 40, 2151-2156.]); Purdy et al. (1989[Purdy, A. P., Berry, A. D., Holm, R. T., Fatemi, M. & Gaskill, D. K. (1989). Inorg. Chem. 28, 2799-2803.]); Oehr & Suhr (1988[Oehr, L. & Suhr, H. (1988). Appl. Phys. A, 45, 151-157.]); Berry et al. (1988[Berry, A. D., Gaskill, D. K., Holm, R. T., Cukauskas, E. J., Kaplan, R. & Henry, R. L. (1988). Appl. Phys. Lett. 52, 1743-1746.]); Pietraszkiewicz et al. (2002[Pietraszkiewicz, M., Karpiuk, J. & Staniszewski, K. (2002). J. Alloys Compd, 341, 267-271.]); Anand (1996[Anand, N. (1996). Sulfonamides and Sulfones, in Burger's Medicinal Chemistry and Drug Discovery, Vol. 2, edited by M. E. Wolff, Terapeutic Agents, pp. 527-544. New York: Wiley.]); Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For the synthesis of the ligand, see: Kirsanov (1952[Kirsanov, A. (1952). Zh. Obshch. Khim. 22, 269-273.]); Kirsanov & Shevchenko (1954[Kirsanov, A. & Shevchenko, V. (1954). Zh. Obshch. Khim. 24, 474-484.]). For theoretical S—O distances in the free non-coord­inated ligand, see: Moroz et al. (2009[Moroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S. & Amirkhanov, V. M. (2009). Polyhedron, 28, 1331-1335.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C8H11NO5PS)2]

  • Mr = 568.50

  • Monoclinic, C 2/c

  • a = 20.692 (2) Å

  • b = 5.675 (1) Å

  • c = 22.178 (3) Å

  • β = 115.26 (1)°

  • V = 2355.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Xcalibur'3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.785, Tmax = 0.939

  • 8999 measured reflections

  • 3280 independent reflections

  • 2503 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.139

  • S = 1.10

  • 3280 reflections

  • 152 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ca1—O3 2.3055 (15)
Ca1—O2 2.3392 (15)
Ca1—O1 2.3802 (14)
O3i—Ca1—O3 152.17 (8)
O3—Ca1—O1 81.97 (6)
O2i—Ca1—O1 177.86 (5)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The coordination compounds of Group 2 metals with O,O - donor ligands have attracted much recent interest as potential precursors for the deposition of a range of electro-ceramic oxides by metal-organic chemical vapour deposition (MOCVD) (Wojtczak et al., 1996; Purdy et al., 1989). Various β- diketonate complexes of Group 2 have been proposed to preparation of deposit films of metals and metal oxides (Oehr et al., 1988; Berry et al., 1988).

N - Phosphorylated sulfonylamides (PS) of a general formula RSO2NHPO(R')2 can be considered as SNP - heterosubstituted structural analogues of β- diketones (HAD). They may be regarded as powerful chelating systems for various metal ions and coordination chemistry of HAD remains to be relatively wide elaborated (Pietraszkiewicz et al., 2002).

The sulfonylamido-group –SO2NH– has been found as a key structural motif shared by a large number of bioactive compounds, spanning a wide variety of biological effects, such as antimicrobial activity, specific enzyme inhibition, hormone regulation, and among others used as chemotherapics (Anand, 1996).

The phosphorylic group in PS ligands possess high nucleophilic affinity. It can be used for obtaining of stable molecular or ionic [M(L)2]-, [M(L)2]0 and [M(L)2]+ species based on s-, p- and d-elements. Herein we report the synthesis and X-ray studies of coordination compound Ca(II) with dimethyl(phenylsulfonyl)amidophosphate.

There are no close contacts between the neighboring chains in the crystal (Fig. 1). The molecular species [Ca(sp)2] forms a polymer around the symmetry centre at x,y, z + 3/2 on calcium atom which is situated in the special position; Ca is immersed in a six-coordination environment provided by two bidentate sp- anion through sulfonyl O1 and phosphoryl O3 O atoms, and O2 of sulfonyl group connected in the bridge manner to the neighboring Ca atom. The resulting coordination polyhedron has the shape of slightly distorted octahedron with phosphoryl oxygen atoms {O3 and O3i} occupying the axial vertexes. The values of some bond lengths and angles are given in the Table 1. The angle O3 Ca1 O3i has 152.17 (8)° and the corresponding distance Ca1 - O3 is 2.3055 (15) Å. [c.f. the sum of effective ionic radii are M2++O2-(Ca, O)=2.35 Å] (Shannon, 1976); the mean deviation from plane O1O2O1iO2iCa1 does not exceed 0.0157 Å only for central atom.

The chelating frame O1S1N1P1iO3i is almost flat: the average deviation for all these atoms does not exceed 0.11Å with the maximum deviation recorded for P1i (0.21 Å). In spite of this, the chelated metallo-cycle as a whole has an anomalous configuration: the value of angle between chelate and the plane Ca1O1O3i is 158.5°.

SO2 group implementing the bridge function links the two calciums in a different manner (Scheme 1.).

Moreover, the distance metal-oxygen, implicated in metal-chelate somewhat longer than intermolecular bond Ca - O, which can be explained in the terms of packing effects.

This fact, in turn, did not lead to the noticeable appropriate increase in the length of SO (1.4547 (15) Å) and 1.4603 (14) Å) contacts (as always in the complex under coordination) in the comparison with theoretically identical distances in free noncoordinated ligand (Moroz et al., 2009). Another bite bond lengths and angles around the atoms of phosphorus, nitrogen and sulfur have typical values for the appropriate substituted amidophosphates and sulfamides.

Related literature top

For general background see: Wojtczak et al. (1996); Purdy et al. (1989); Oehr et al. (1988); Berry et al. (1988); Pietraszkiewicz et al. (2002); Anand (1996); Shannon (1976). For the synthesis of the ligand, see: Kirsanov (1952); Kirsanov & Shevchenko (1954). For theoretical S—O distances in the free non-coordinated ligand, see: Moroz et al. (2009)

Experimental top

The synthesis of H(sp) was carried out according to previously reported method (Kirsanov, 1952; Kirsanov et al., 1954). Calcium (0,01 g, 0,25 mmol) was dissolved in 5 ml of hot methanol and combined with a hot solution H(sp) (0,133 g, 0,5 mmol) in metanol (5 ml). The mixture was heated to 330 K for about 30 min. Colourless crystals of complex suitable for X-ray diffraction separated over a period of 7 days; they were washed with dry propan-2-ol and dried in vacuo at room temperature (0,134 g, 94%). Analysis found: IR (KBr pellet, cm-1): 1220, 1060 (s, SO2) and 1190 (s, PO).

Refinement top

All hydrogen atoms were located from electron density difference maps and included in the refinement in the riding motion approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl groups and 1.2 times Ueq of the carrier atom for the other atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The polymeric chain of [Ca(sp)2], showing the formation of the cyclic motif (a); A view of [Ca(sp)2] (b) with displacement ellipsoids shown at the 30% probability level. H atoms and C6H5 groups have been omitted for clarity. Symmetry codes: (i) -x, y, -z + 3/2; (ii) x, y + 1, z.
catena-Poly[calcium-bis[µ-N- (dimethylphosphinoyl)benzenesulfonamidato]] top
Crystal data top
[Ca(C8H11NO5PS)2]F(000) = 1176
Mr = 568.50Dx = 1.603 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6842 reflections
a = 20.692 (2) Åθ = 3.6–27.5°
b = 5.675 (1) ŵ = 0.63 mm1
c = 22.178 (3) ÅT = 293 K
β = 115.26 (1)°Block, colourless
V = 2355.3 (6) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Xcalibur'3
diffractometer
3280 independent reflections
Radiation source: Enhance (Mo) X-ray Source2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.6°
ω–scansh = 2529
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 77
Tmin = 0.785, Tmax = 0.939l = 3028
8999 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.139H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0886P)2]
where P = (Fo2 + 2Fc2)/3
3280 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ca(C8H11NO5PS)2]V = 2355.3 (6) Å3
Mr = 568.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.692 (2) ŵ = 0.63 mm1
b = 5.675 (1) ÅT = 293 K
c = 22.178 (3) Å0.40 × 0.20 × 0.10 mm
β = 115.26 (1)°
Data collection top
Xcalibur'3
diffractometer
3280 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2503 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.939Rint = 0.036
8999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.10Δρmax = 1.28 e Å3
3280 reflectionsΔρmin = 0.59 e Å3
152 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.00000.11798 (9)0.75000.02738 (15)
P10.08497 (3)0.40618 (9)0.59729 (3)0.03320 (16)
S10.11429 (2)0.61596 (8)0.80223 (2)0.02767 (15)
N10.10168 (11)0.6246 (3)0.86566 (10)0.0398 (4)
O10.08963 (8)0.4015 (2)0.76256 (7)0.0361 (3)
O20.08568 (8)0.1711 (3)0.76345 (8)0.0407 (4)
O30.03860 (8)0.2157 (3)0.63913 (7)0.0386 (3)
O40.05382 (10)0.5213 (3)0.55067 (8)0.0476 (4)
O50.15878 (8)0.3097 (3)0.54554 (8)0.0506 (4)
C10.20763 (10)0.6308 (3)0.82721 (10)0.0299 (4)
C20.24528 (12)0.8183 (4)0.86721 (13)0.0457 (5)
H20.22210.93130.88120.055*
C30.31817 (13)0.8330 (5)0.88576 (15)0.0565 (7)
H30.34410.95710.91260.068*
C40.35270 (13)0.6668 (5)0.86510 (14)0.0518 (6)
H40.40150.67990.87740.062*
C50.31461 (12)0.4795 (5)0.82586 (12)0.0488 (6)
H50.33790.36670.81190.059*
C60.24168 (12)0.4602 (4)0.80730 (11)0.0397 (5)
H60.21610.33330.78170.048*
C70.00791 (16)0.6710 (5)0.57917 (17)0.0597 (7)
H7C0.00480.81540.59400.090*
H7B0.02510.70520.54620.090*
H7A0.04460.59270.61640.090*
C80.16248 (17)0.0968 (5)0.50864 (15)0.0606 (8)
H8C0.21080.07190.47630.091*
H8B0.14720.03450.53880.091*
H8A0.13190.11150.48630.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0234 (2)0.0265 (3)0.0295 (3)0.0000.0087 (2)0.000
P10.0313 (3)0.0385 (3)0.0308 (3)0.00411 (19)0.0142 (2)0.0013 (2)
S10.0241 (2)0.0263 (2)0.0343 (3)0.00034 (15)0.01395 (19)0.00146 (16)
N10.0460 (10)0.0390 (10)0.0458 (11)0.0092 (8)0.0305 (9)0.0062 (8)
O10.0359 (7)0.0375 (8)0.0371 (8)0.0088 (6)0.0176 (6)0.0062 (6)
O20.0320 (7)0.0384 (8)0.0543 (9)0.0098 (6)0.0210 (7)0.0140 (7)
O30.0413 (8)0.0406 (8)0.0311 (7)0.0107 (6)0.0126 (6)0.0017 (6)
O40.0515 (9)0.0581 (10)0.0415 (8)0.0041 (8)0.0280 (7)0.0036 (8)
O50.0340 (8)0.0555 (10)0.0503 (10)0.0032 (7)0.0065 (7)0.0052 (8)
C10.0257 (8)0.0337 (9)0.0300 (9)0.0009 (7)0.0115 (7)0.0019 (7)
C20.0365 (11)0.0409 (11)0.0571 (14)0.0054 (9)0.0174 (10)0.0132 (10)
C30.0370 (11)0.0575 (15)0.0651 (16)0.0168 (11)0.0124 (11)0.0087 (13)
C40.0285 (10)0.0703 (16)0.0541 (14)0.0023 (11)0.0153 (10)0.0073 (13)
C50.0360 (11)0.0663 (16)0.0472 (13)0.0121 (11)0.0206 (10)0.0021 (12)
C60.0334 (10)0.0450 (11)0.0389 (11)0.0060 (9)0.0136 (8)0.0042 (9)
C70.0610 (16)0.0568 (15)0.082 (2)0.0038 (13)0.0498 (16)0.0032 (15)
C80.0541 (15)0.0649 (18)0.0486 (15)0.0044 (12)0.0084 (12)0.0119 (12)
Geometric parameters (Å, º) top
Ca1—O3i2.3055 (15)O5—C81.443 (3)
Ca1—O32.3055 (15)C1—C61.377 (3)
Ca1—O2i2.3392 (15)C1—C21.391 (3)
Ca1—O22.3392 (15)C2—C31.386 (3)
Ca1—O12.3802 (14)C2—H20.9300
Ca1—O1i2.3802 (14)C3—C41.375 (4)
Ca1—P1i3.4863 (6)C3—H30.9300
Ca1—P13.4863 (6)C4—C51.387 (4)
P1—O31.4801 (15)C4—H40.9300
P1—O51.5664 (17)C5—C61.389 (3)
P1—O41.5748 (17)C5—H50.9300
P1—N1i1.6043 (19)C6—H60.9300
S1—O2ii1.4547 (15)C7—H7C0.9600
S1—O11.4603 (14)C7—H7B0.9600
S1—N11.5370 (19)C7—H7A0.9600
S1—C11.7695 (19)C8—H8C0.9600
N1—P1i1.6043 (19)C8—H8B0.9600
O2—S1iii1.4547 (15)C8—H8A0.9600
O4—C71.437 (4)
O3i—Ca1—O3152.17 (8)O1—S1—N1115.20 (9)
O3i—Ca1—O2i101.74 (5)O2ii—S1—C1105.07 (9)
O3—Ca1—O2i97.69 (6)O1—S1—C1106.42 (9)
O3i—Ca1—O297.69 (6)N1—S1—C1107.50 (11)
O3—Ca1—O2101.74 (5)S1—N1—P1i127.01 (12)
O2i—Ca1—O290.94 (8)S1—O1—Ca1133.51 (9)
O3i—Ca1—O179.32 (5)S1iii—O2—Ca1138.86 (9)
O3—Ca1—O181.97 (6)P1—O3—Ca1132.93 (9)
O2i—Ca1—O1177.86 (5)C7—O4—P1119.51 (17)
O2—Ca1—O187.07 (5)C8—O5—P1120.50 (17)
O3i—Ca1—O1i81.97 (6)C6—C1—C2121.22 (19)
O3—Ca1—O1i79.32 (5)C6—C1—S1120.38 (15)
O2i—Ca1—O1i87.07 (5)C2—C1—S1118.40 (15)
O2—Ca1—O1i177.86 (5)C3—C2—C1118.5 (2)
O1—Ca1—O1i94.93 (8)C1—C2—H2120.6
O3i—Ca1—P1i18.11 (4)C3—C2—H2120.6
O3—Ca1—P1i136.46 (4)C4—C3—C2121.0 (2)
O2i—Ca1—P1i119.57 (4)C4—C3—H3119.7
O2—Ca1—P1i99.47 (4)C2—C3—H3119.7
O1—Ca1—P1i61.60 (4)C3—C4—C5119.9 (2)
O1i—Ca1—P1i80.87 (4)C3—C4—H4120.0
O3i—Ca1—P1136.46 (4)C5—C4—H4120.0
O3—Ca1—P118.11 (4)C4—C5—C6120.1 (2)
O2i—Ca1—P199.47 (4)C4—C5—H5119.9
O2—Ca1—P1119.57 (4)C6—C5—H5119.9
O1—Ca1—P180.87 (4)C1—C6—C5119.3 (2)
O1i—Ca1—P161.60 (4)C1—C6—H6120.4
P1i—Ca1—P1124.04 (2)C5—C6—H6120.4
O3—P1—O5111.87 (10)O4—C7—H7C109.5
O3—P1—O4112.15 (10)O4—C7—H7B109.5
O5—P1—O4102.01 (10)H7C—C7—H7B109.5
O3—P1—N1i117.84 (9)O4—C7—H7A109.5
O5—P1—N1i106.83 (10)H7C—C7—H7A109.5
O4—P1—N1i104.71 (10)H7B—C7—H7A109.5
O3—P1—Ca128.96 (6)O5—C8—H8C109.5
O5—P1—Ca1118.53 (8)O5—C8—H8B109.5
O4—P1—Ca1130.87 (7)H8C—C8—H8B109.5
N1i—P1—Ca189.68 (7)O5—C8—H8A109.5
O2ii—S1—O1112.75 (9)H8C—C8—H8A109.5
O2ii—S1—N1109.23 (10)H8B—C8—H8A109.5
O3i—Ca1—P1—O3155.86 (11)P1—Ca1—O1—S1106.66 (12)
O2i—Ca1—P1—O385.79 (14)O3i—Ca1—O2—S1iii52.16 (15)
O2—Ca1—P1—O310.74 (14)O3—Ca1—O2—S1iii147.87 (15)
O1—Ca1—P1—O392.07 (14)O2i—Ca1—O2—S1iii49.81 (12)
O1i—Ca1—P1—O3167.21 (14)O1—Ca1—O2—S1iii130.96 (15)
P1i—Ca1—P1—O3138.45 (14)P1i—Ca1—O2—S1iii70.39 (15)
O3i—Ca1—P1—O5120.27 (10)P1—Ca1—O2—S1iii151.26 (13)
O3—Ca1—P1—O583.87 (16)O5—P1—O3—Ca1109.73 (13)
O2i—Ca1—P1—O51.92 (9)O4—P1—O3—Ca1136.34 (13)
O2—Ca1—P1—O594.62 (9)N1i—P1—O3—Ca114.66 (17)
O1—Ca1—P1—O5175.94 (9)O3i—Ca1—O3—P137.12 (12)
O1i—Ca1—P1—O583.34 (9)O2i—Ca1—O3—P196.95 (13)
P1i—Ca1—P1—O5137.68 (8)O2—Ca1—O3—P1170.47 (13)
O3i—Ca1—P1—O498.13 (11)O1—Ca1—O3—P185.18 (13)
O3—Ca1—P1—O457.74 (17)O1i—Ca1—O3—P111.43 (13)
O2i—Ca1—P1—O4143.52 (10)P1i—Ca1—O3—P152.92 (16)
O2—Ca1—P1—O446.99 (11)O3—P1—O4—C772.2 (2)
O1—Ca1—P1—O434.34 (10)O5—P1—O4—C7167.92 (19)
O1i—Ca1—P1—O4135.05 (11)N1i—P1—O4—C756.7 (2)
P1i—Ca1—P1—O480.71 (10)Ca1—P1—O4—C746.0 (2)
O3i—Ca1—P1—N1i11.21 (9)O3—P1—O5—C843.3 (2)
O3—Ca1—P1—N1i167.07 (15)O4—P1—O5—C876.7 (2)
O2i—Ca1—P1—N1i107.14 (8)N1i—P1—O5—C8173.7 (2)
O2—Ca1—P1—N1i156.32 (9)Ca1—P1—O5—C874.6 (2)
O1—Ca1—P1—N1i75.00 (8)O2ii—S1—C1—C6118.55 (18)
O1i—Ca1—P1—N1i25.72 (9)O1—S1—C1—C61.2 (2)
P1i—Ca1—P1—N1i28.62 (7)N1—S1—C1—C6125.18 (18)
O2ii—S1—N1—P1i145.87 (15)O2ii—S1—C1—C261.4 (2)
O1—S1—N1—P1i17.8 (2)O1—S1—C1—C2178.77 (18)
C1—S1—N1—P1i100.63 (16)N1—S1—C1—C254.8 (2)
O2ii—S1—O1—Ca1100.86 (13)C6—C1—C2—C31.3 (4)
N1—S1—O1—Ca125.45 (16)S1—C1—C2—C3178.7 (2)
C1—S1—O1—Ca1144.47 (12)C1—C2—C3—C40.2 (4)
O3i—Ca1—O1—S134.37 (12)C2—C3—C4—C50.9 (5)
O3—Ca1—O1—S1124.94 (13)C3—C4—C5—C60.2 (4)
O2—Ca1—O1—S1132.76 (13)C2—C1—C6—C51.9 (3)
O1i—Ca1—O1—S146.48 (10)S1—C1—C6—C5178.06 (18)
P1i—Ca1—O1—S130.35 (10)C4—C5—C6—C11.2 (4)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y+1, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ca(C8H11NO5PS)2]
Mr568.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.692 (2), 5.675 (1), 22.178 (3)
β (°) 115.26 (1)
V3)2355.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerXcalibur'3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.785, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
8999, 3280, 2503
Rint0.036
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.139, 1.10
No. of reflections3280
No. of parameters152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 0.59

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ca1—O32.3055 (15)Ca1—O12.3802 (14)
Ca1—O22.3392 (15)
O3i—Ca1—O3152.17 (8)O2i—Ca1—O1177.86 (5)
O3—Ca1—O181.97 (6)
Symmetry code: (i) x, y, z+3/2.
 

Acknowledgements

The authors gratefully acknowledge the Ukrainian State Fund for Fundamental Researchers (SFFR) for the financial support of Research Program F25/193–2008 (Chemistry).

References

First citationAnand, N. (1996). Sulfonamides and Sulfones, in Burger's Medicinal Chemistry and Drug Discovery, Vol. 2, edited by M. E. Wolff, Terapeutic Agents, pp. 527–544. New York: Wiley.  Google Scholar
First citationBerry, A. D., Gaskill, D. K., Holm, R. T., Cukauskas, E. J., Kaplan, R. & Henry, R. L. (1988). Appl. Phys. Lett. 52, 1743–1746.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKirsanov, A. (1952). Zh. Obshch. Khim. 22, 269–273.  CAS Google Scholar
First citationKirsanov, A. & Shevchenko, V. (1954). Zh. Obshch. Khim. 24, 474–484.  CAS Google Scholar
First citationMoroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S. & Amirkhanov, V. M. (2009). Polyhedron, 28, 1331–1335.  Web of Science CSD CrossRef CAS Google Scholar
First citationOehr, L. & Suhr, H. (1988). Appl. Phys. A, 45, 151–157.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPietraszkiewicz, M., Karpiuk, J. & Staniszewski, K. (2002). J. Alloys Compd, 341, 267–271.  Web of Science CrossRef CAS Google Scholar
First citationPurdy, A. P., Berry, A. D., Holm, R. T., Fatemi, M. & Gaskill, D. K. (1989). Inorg. Chem. 28, 2799–2803.  CrossRef CAS Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojtczak, W. A., Fleig, F. & Hampden-Smith, M. J. (1996). Adv. Organomet. Chem. 40, 2151–2156.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds