organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(1E)-1-(4-Chloro­phen­yl)ethyl­­idene]formohydrazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan-60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 5 September 2009; accepted 14 September 2009; online 19 September 2009)

The structure of the title compound, C9H9ClN2O, consists of centrosymmetric dimers due to inter­molecular N—H⋯O hydrogen bonding, forming R22(8) ring motifs. The dihedral angle between the p-chloro­phenyl unit and the remaining heavy-atom group is 6.77 (17)°.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Guo (2007[Guo, H.-M. (2007). Acta Cryst. E63, o3870.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9ClN2O

  • Mr = 196.63

  • Monoclinic, P 21 /c

  • a = 5.9373 (5) Å

  • b = 6.2178 (4) Å

  • c = 25.3495 (18) Å

  • β = 93.900 (4)°

  • V = 933.66 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.940

  • 9690 measured reflections

  • 2311 independent reflections

  • 1426 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.150

  • S = 1.05

  • 2311 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.8600 2.0800 2.920 (3) 164.00
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Schiff bases are important intermediates in a number of enzymatic reactions involving interaction of an enzyme with an amino or a carbonyl group of the substrate. The title compound (I, Fig. 1), has been prepared as a derivative.

The crystal structures of N'-(1-(4-Chlorophenyl)ethylidene)propionohydrazide (Guo, 2007) has been published which differs from the title compound (I) due to the attachment of ethyl moiety instead of H-atom with the carbonyl group.

In the title compound, due to intermolecular H-bonding the molecules are dimerized forming 8-membered R22(8) ring motifs (Table 1, Fig. 2) (Bernstein et al., 1995). The p-Clorophenyl moiety A (C1—C6, Cl1) and the remaining heavy atoms group B (C8, C7, N1, N2 C9, O1) are almost planar with r.m.s. deviations of 0.007 and 0.009 Å, respectively, with a 6.77 (17)° dihedral angle between them.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Guo (2007).

Experimental top

formohydrazide (1 g, 0.017 mol) was dissolved in ethanol (10 ml) and stirred. To this solution 4-Chlororoacetophenone (2.067 ml, 0.017 mol) was added dropwise and refluxed for 30 min. During refluxing precipitates were formed and the reaction mixture was further heated for 2 h. The completion of reaction was monitored by TLC. The solution was cooled to room temperature and the crued solid was collected by suction filtration. The precipitates were washed with hot ethanol, filtered and dried. The colorless prisms of title compound (I) were obtained by crystallization of the crude material in 1,4-dioxan.

Refinement top

The H-atoms were positioned geometrically with N—H = 0.86, C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules are dimerized and form ring motifs.
N'-[(1E)-1-(4-Chlorophenyl)ethylidene]formohydrazide top
Crystal data top
C9H9ClN2OF(000) = 408
Mr = 196.63Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1864 reflections
a = 5.9373 (5) Åθ = 2.3–28.0°
b = 6.2178 (4) ŵ = 0.37 mm1
c = 25.3495 (18) ÅT = 296 K
β = 93.900 (4)°Prismatic, colorless
V = 933.66 (12) Å30.25 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2311 independent reflections
Radiation source: fine-focus sealed tube1426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 3.2°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.914, Tmax = 0.940l = 3332
9690 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.2896P]
where P = (Fo2 + 2Fc2)/3
2311 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C9H9ClN2OV = 933.66 (12) Å3
Mr = 196.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9373 (5) ŵ = 0.37 mm1
b = 6.2178 (4) ÅT = 296 K
c = 25.3495 (18) Å0.25 × 0.22 × 0.18 mm
β = 93.900 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2311 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1426 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.940Rint = 0.025
9690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2311 reflectionsΔρmin = 0.20 e Å3
119 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38204 (13)1.27773 (12)0.21878 (3)0.0806 (3)
O10.2494 (3)0.0349 (3)0.03180 (7)0.0740 (7)
N10.1941 (3)0.4376 (3)0.06100 (7)0.0500 (6)
N20.1350 (3)0.2578 (3)0.03140 (7)0.0536 (7)
C10.1329 (3)0.6969 (3)0.12510 (8)0.0447 (7)
C20.0192 (4)0.7732 (4)0.16716 (9)0.0611 (9)
C30.0928 (4)0.9511 (4)0.19580 (10)0.0654 (9)
C40.2836 (4)1.0560 (4)0.18273 (9)0.0523 (8)
C50.3992 (4)0.9858 (4)0.14095 (10)0.0622 (9)
C60.3239 (4)0.8092 (4)0.11281 (9)0.0593 (8)
C70.0599 (4)0.5018 (3)0.09485 (8)0.0481 (7)
C80.1579 (4)0.3947 (4)0.10580 (11)0.0743 (10)
C90.2786 (4)0.1908 (4)0.00268 (10)0.0623 (9)
H20.110390.702390.176360.0733*
H2A0.009680.191850.034970.0644*
H30.013220.999590.223830.0785*
H50.528141.057940.131800.0746*
H60.403420.763080.084540.0712*
H90.411910.267910.004680.0747*
H810.130240.246130.114310.1115*
H820.261160.404440.075070.1115*
H830.221850.464700.135040.1115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0897 (6)0.0672 (5)0.0858 (5)0.0185 (3)0.0123 (4)0.0250 (3)
O10.0641 (12)0.0777 (12)0.0818 (12)0.0196 (9)0.0177 (9)0.0322 (10)
N10.0503 (11)0.0477 (10)0.0521 (10)0.0062 (8)0.0042 (8)0.0047 (8)
N20.0498 (11)0.0522 (12)0.0592 (12)0.0094 (9)0.0059 (9)0.0090 (9)
C10.0426 (12)0.0427 (11)0.0491 (12)0.0028 (9)0.0055 (9)0.0032 (9)
C20.0555 (15)0.0653 (15)0.0647 (15)0.0166 (12)0.0207 (11)0.0094 (11)
C30.0656 (17)0.0681 (16)0.0649 (15)0.0096 (13)0.0224 (12)0.0138 (12)
C40.0548 (14)0.0467 (12)0.0553 (13)0.0031 (10)0.0032 (10)0.0035 (9)
C50.0566 (15)0.0567 (14)0.0756 (16)0.0178 (11)0.0215 (12)0.0066 (12)
C60.0558 (14)0.0593 (14)0.0658 (14)0.0143 (11)0.0252 (11)0.0120 (11)
C70.0454 (12)0.0467 (12)0.0524 (12)0.0047 (10)0.0048 (10)0.0036 (9)
C80.0589 (16)0.0718 (18)0.0944 (19)0.0237 (13)0.0209 (14)0.0215 (14)
C90.0531 (15)0.0669 (16)0.0677 (16)0.0143 (12)0.0107 (12)0.0152 (12)
Geometric parameters (Å, º) top
Cl1—C41.733 (3)C4—C51.372 (3)
O1—C91.224 (3)C5—C61.368 (3)
N1—N21.379 (3)C7—C81.497 (3)
N1—C71.274 (3)C2—H20.9300
N2—C91.322 (3)C3—H30.9300
N2—H2A0.8600C5—H50.9300
C1—C21.384 (3)C6—H60.9300
C1—C71.484 (3)C8—H810.9600
C1—C61.385 (3)C8—H820.9600
C2—C31.378 (3)C8—H830.9600
C3—C41.367 (3)C9—H90.9300
Cl1···C4i3.535 (2)H2···C82.6200
O1···N2ii2.920 (3)H2···H831.9000
O1···C8ii3.288 (3)H2A···C82.4600
O1···C9iii3.202 (3)H2A···H812.2500
O1···H2Aii2.0800H2A···H822.3600
O1···H6iv2.8300H2A···O1ii2.0800
O1···H9iii2.8600H2A···C9ii3.0100
O1···H81ii2.7800H5···C8ix2.9100
N2···O1ii2.920 (3)H5···H81ix2.4100
N1···H62.4300H6···N12.4300
N2···H812.7100H6···O1iv2.8300
N2···H822.8200H6···C9iv2.9100
C4···Cl1v3.535 (2)H6···H9iv2.3700
C7···C9vi3.537 (3)H9···O1iii2.8600
C8···O1ii3.288 (3)H9···H6iv2.3700
C9···O1iii3.202 (3)H81···N22.7100
C9···C9iii3.537 (3)H81···C3x3.0000
C9···C7vi3.537 (3)H81···H2A2.2500
C2···H832.5000H81···H5viii2.4100
C3···H81vii3.0000H81···O1ii2.7800
C8···H2A2.4600H82···N22.8200
C8···H5viii2.9100H82···H2A2.3600
C8···H22.6200H83···C22.5000
C9···H2Aii3.0100H83···H21.9000
C9···H6iv2.9100
N2—N1—C7118.23 (18)O1—C9—N2124.9 (2)
N1—N2—C9117.37 (18)C1—C2—H2119.00
C9—N2—H2A121.00C3—C2—H2119.00
N1—N2—H2A121.00C2—C3—H3120.00
C6—C1—C7120.71 (19)C4—C3—H3120.00
C2—C1—C7122.53 (18)C4—C5—H5120.00
C2—C1—C6116.75 (19)C6—C5—H5120.00
C1—C2—C3121.8 (2)C1—C6—H6119.00
C2—C3—C4119.6 (2)C5—C6—H6119.00
Cl1—C4—C5119.44 (19)C7—C8—H81109.00
Cl1—C4—C3120.45 (19)C7—C8—H82109.00
C3—C4—C5120.1 (2)C7—C8—H83109.00
C4—C5—C6119.7 (2)H81—C8—H82109.00
C1—C6—C5122.1 (2)H81—C8—H83109.00
N1—C7—C1115.47 (19)H82—C8—H83109.00
N1—C7—C8124.97 (19)O1—C9—H9118.00
C1—C7—C8119.56 (19)N2—C9—H9118.00
C7—N1—N2—C9178.5 (2)C6—C1—C2—C30.5 (3)
N2—N1—C7—C81.0 (3)C7—C1—C2—C3178.1 (2)
N2—N1—C7—C1179.61 (17)C6—C1—C7—C8174.7 (2)
N1—N2—C9—O1179.6 (2)C1—C2—C3—C40.2 (4)
C2—C1—C6—C50.6 (3)C2—C3—C4—C50.8 (4)
C7—C1—C6—C5178.0 (2)C2—C3—C4—Cl1179.02 (19)
C2—C1—C7—C86.7 (3)Cl1—C4—C5—C6179.14 (19)
C6—C1—C7—N15.9 (3)C3—C4—C5—C60.7 (4)
C2—C1—C7—N1172.7 (2)C4—C5—C6—C10.1 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x+1, y1/2, z+1/2; (vi) x, y+1, z; (vii) x, y+1, z; (viii) x1, y1, z; (ix) x+1, y+1, z; (x) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.86002.08002.920 (3)164.00
Symmetry code: (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC9H9ClN2O
Mr196.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.9373 (5), 6.2178 (4), 25.3495 (18)
β (°) 93.900 (4)
V3)933.66 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.914, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
9690, 2311, 1426
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.150, 1.05
No. of reflections2311
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.86002.08002.920 (3)164.00
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for technical support, respectively.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuo, H.-M. (2007). Acta Cryst. E63, o3870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds