organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 2-(5-fluoro-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 9 September 2009; accepted 13 September 2009; online 19 September 2009)

In the title compound, C14H15FO4S, the O atom and the methyl group of the methyl­sulfinyl substituent are located on opposite sides of the plane of the benzofuran fragment which is essentially planar with a mean deviation of 0.008 (1) Å from its least-squares plane. The crystal structure stabilized by three different inter­molecular non-classical C—H⋯O hydrogen bonds. The crystal structure also exhibits aromatic ππ inter­actions between the benzene rings of adjacent benzofuran ring systems [centroid–centroid distance = 3.688 (2) Å]

Related literature

For the crystal structures of similar alkyl 2-(5-fluoro-3-methyl­sulfinyl-1-benzofuran-2-yl) acetate derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1826.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2096.]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Twyman & Allsop (1999[Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383-9384.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15FO4S

  • Mr = 298.32

  • Monoclinic, P 21 /c

  • a = 11.6332 (6) Å

  • b = 14.9522 (7) Å

  • c = 8.2333 (4) Å

  • β = 102.277 (1)°

  • V = 1399.36 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.25 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.961

  • 12229 measured reflections

  • 3173 independent reflections

  • 2476 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.09

  • 3173 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.93 2.50 3.370 (2) 155
C6—H6⋯O2ii 0.93 2.54 3.369 (2) 149
C9—H9B⋯O4iii 0.97 2.26 3.228 (2) 176
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules involving benzofuran skeleton have attracted particular interest in view of their biological and pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of alkyl 2-(5-fluoro-3-methylsulfinyl-1-benzofuran-2-yl) acetate analogues (Choi et al., 2009a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.008 (1) Å from the least-squares plane defined by the nine constituent atoms. The crystal packing (Fig. 2) is stabilized by three intermolecular non-classical C—H···O hydrogen bonds; the first between an H atom of the benzofuran ring and the oxygen of the CO unit, with a C5–H5···O3i, the second between an H atom of the benzofuran ring and the oxygen of the isopropoxy group, with a C6—H6···O2ii, the third between a methylene H atom and the oxygen of the SO unit, with a C9—H9B···O4iii, respectively (Table 1). The crystal packing (Fig. 2) is further stabilized by aromatic π···π interactions between the benzene rings of neighboring molecules, with a Cg···Cgi distance of 3.688 (2) Å (Cg is the centroid of the C2–C7 benzene ring).

Related literature top

For the crystal structures of similar alkyl 2-(5-fluoro-3-methylsulfinyl-1-benzofuran-2-yl) acetate derivatives, see: Choi et al. (2009a,b). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999).

Experimental top

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of isopropyl 2-(5-fluoro-3-methylsulfanyl-1-benzofuran-2-yl) acetate (282 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 391–392 K; Rf = 0.67 (hexane–ethyl acetate, 1;2 v/v )]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: EI-MS 298 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methine, 0.98 Å for the methylene, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine, and methylene H atoms, and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The C—H···O and π···π interactions (dotted lines) in the title compound. Cg denotes the benzene ring centroid. [Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) - x + 1, - y + 1, - z + 2; (iii) x, - y, z + 1/2; (iv) x, - y + 1/2, z - 1/2.]
Isopropyl 2-(5-fluoro-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C14H15FO4SF(000) = 624
Mr = 298.32Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5216 reflections
a = 11.6332 (6) Åθ = 2.3–27.4°
b = 14.9522 (7) ŵ = 0.25 mm1
c = 8.2333 (4) ÅT = 173 K
β = 102.277 (1)°Block, colorless
V = 1399.36 (12) Å30.25 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3173 independent reflections
Radiation source: fine-focus sealed tube2476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.8°
ϕ and ω scansh = 1415
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1919
Tmin = 0.940, Tmax = 0.961l = 1010
12229 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.5417P]
where P = (Fo2 + 2Fc2)/3
3173 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H15FO4SV = 1399.36 (12) Å3
Mr = 298.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6332 (6) ŵ = 0.25 mm1
b = 14.9522 (7) ÅT = 173 K
c = 8.2333 (4) Å0.25 × 0.20 × 0.16 mm
β = 102.277 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3173 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2476 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.961Rint = 0.043
12229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.09Δρmax = 0.39 e Å3
3173 reflectionsΔρmin = 0.39 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.16889 (4)0.32823 (3)0.59899 (5)0.02546 (13)
F0.53377 (11)0.32123 (8)0.19202 (14)0.0427 (3)
O10.47612 (10)0.43326 (8)0.79555 (14)0.0242 (3)
O20.19830 (10)0.54133 (8)1.03615 (14)0.0264 (3)
O30.17889 (11)0.53806 (9)0.75830 (15)0.0329 (3)
O40.17181 (12)0.23235 (9)0.54858 (18)0.0393 (3)
C10.31410 (14)0.36896 (11)0.6411 (2)0.0222 (3)
C20.40529 (14)0.36553 (11)0.5455 (2)0.0222 (3)
C30.41420 (16)0.33514 (12)0.3875 (2)0.0264 (4)
H30.35160.30780.31550.032*
C40.52168 (16)0.34834 (12)0.3458 (2)0.0289 (4)
C50.61801 (16)0.38849 (12)0.4473 (2)0.0284 (4)
H50.68800.39500.41110.034*
C60.60937 (14)0.41885 (12)0.6032 (2)0.0257 (4)
H60.67220.44640.67440.031*
C70.50247 (14)0.40604 (11)0.6470 (2)0.0224 (3)
C80.36106 (14)0.40933 (11)0.7872 (2)0.0229 (4)
C90.31082 (15)0.43478 (12)0.9330 (2)0.0252 (4)
H9A0.37430.45241.02390.030*
H9B0.27250.38310.96890.030*
C100.22306 (14)0.51050 (12)0.8949 (2)0.0234 (4)
C110.11677 (16)0.61749 (12)1.0234 (2)0.0298 (4)
H110.05550.61210.92180.036*
C120.06204 (17)0.61224 (13)1.1728 (2)0.0340 (4)
H12A0.01910.55721.16990.051*
H12B0.00940.66181.17180.051*
H12C0.12260.61431.27210.051*
C130.1857 (2)0.70278 (14)1.0176 (3)0.0504 (6)
H13A0.21830.70280.91990.076*
H13B0.24820.70641.11460.076*
H13C0.13440.75331.01470.076*
C140.11297 (18)0.39058 (15)0.4135 (2)0.0397 (5)
H14A0.15290.37250.32820.060*
H14B0.12580.45320.43560.060*
H14C0.03020.37940.37730.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0205 (2)0.0281 (2)0.0274 (2)0.00173 (17)0.00402 (16)0.00285 (18)
F0.0481 (7)0.0526 (8)0.0320 (6)0.0002 (6)0.0189 (5)0.0125 (5)
O10.0211 (6)0.0286 (6)0.0221 (6)0.0011 (5)0.0031 (5)0.0028 (5)
O20.0283 (6)0.0295 (7)0.0213 (6)0.0066 (5)0.0046 (5)0.0010 (5)
O30.0323 (7)0.0439 (8)0.0226 (6)0.0096 (6)0.0062 (5)0.0042 (6)
O40.0339 (7)0.0291 (7)0.0529 (9)0.0065 (6)0.0048 (6)0.0116 (6)
C10.0203 (8)0.0202 (8)0.0253 (8)0.0012 (6)0.0030 (6)0.0000 (7)
C20.0222 (8)0.0196 (8)0.0241 (8)0.0022 (6)0.0033 (6)0.0002 (7)
C30.0281 (9)0.0243 (9)0.0258 (8)0.0002 (7)0.0037 (7)0.0046 (7)
C40.0359 (10)0.0275 (9)0.0254 (9)0.0052 (8)0.0113 (8)0.0022 (7)
C50.0256 (9)0.0279 (9)0.0339 (9)0.0044 (7)0.0108 (7)0.0028 (8)
C60.0200 (8)0.0263 (9)0.0298 (9)0.0015 (7)0.0029 (7)0.0005 (7)
C70.0241 (8)0.0213 (8)0.0217 (8)0.0028 (7)0.0042 (6)0.0000 (6)
C80.0198 (8)0.0233 (8)0.0251 (8)0.0009 (6)0.0037 (6)0.0026 (7)
C90.0263 (9)0.0283 (9)0.0205 (8)0.0009 (7)0.0037 (7)0.0005 (7)
C100.0215 (8)0.0274 (9)0.0214 (8)0.0046 (7)0.0052 (6)0.0015 (7)
C110.0299 (9)0.0320 (10)0.0269 (9)0.0098 (8)0.0049 (7)0.0021 (8)
C120.0301 (9)0.0382 (11)0.0359 (10)0.0079 (8)0.0119 (8)0.0019 (9)
C130.0648 (15)0.0322 (11)0.0636 (15)0.0043 (10)0.0345 (13)0.0087 (11)
C140.0302 (10)0.0517 (13)0.0329 (10)0.0040 (9)0.0030 (8)0.0067 (9)
Geometric parameters (Å, º) top
S—O41.4949 (14)C6—C71.380 (2)
S—C11.7595 (17)C6—H60.9300
S—C141.7894 (19)C8—C91.491 (2)
F—C41.365 (2)C9—C101.512 (2)
O1—C81.3731 (19)C9—H9A0.9700
O1—C71.384 (2)C9—H9B0.9700
O2—C101.338 (2)C11—C121.502 (2)
O2—C111.472 (2)C11—C131.513 (3)
O3—C101.205 (2)C11—H110.9800
C1—C81.353 (2)C12—H12A0.9600
C1—C21.450 (2)C12—H12B0.9600
C2—C71.394 (2)C12—H12C0.9600
C2—C31.402 (2)C13—H13A0.9600
C3—C41.380 (2)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.384 (3)C14—H14A0.9600
C5—C61.385 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
O4—S—C1108.00 (8)C10—C9—H9A109.0
O4—S—C14106.75 (10)C8—C9—H9B109.0
C1—S—C1498.47 (9)C10—C9—H9B109.0
C8—O1—C7106.03 (12)H9A—C9—H9B107.8
C10—O2—C11117.35 (13)O3—C10—O2124.43 (16)
C8—C1—C2107.15 (14)O3—C10—C9125.76 (15)
C8—C1—S121.23 (13)O2—C10—C9109.79 (14)
C2—C1—S131.57 (13)O2—C11—C12106.27 (14)
C7—C2—C3119.14 (15)O2—C11—C13108.45 (16)
C7—C2—C1104.64 (14)C12—C11—C13112.95 (17)
C3—C2—C1136.21 (16)O2—C11—H11109.7
C4—C3—C2115.75 (16)C12—C11—H11109.7
C4—C3—H3122.1C13—C11—H11109.7
C2—C3—H3122.1C11—C12—H12A109.5
F—C4—C3117.80 (16)C11—C12—H12B109.5
F—C4—C5117.32 (16)H12A—C12—H12B109.5
C3—C4—C5124.87 (16)C11—C12—H12C109.5
C4—C5—C6119.52 (16)H12A—C12—H12C109.5
C4—C5—H5120.2H12B—C12—H12C109.5
C6—C5—H5120.2C11—C13—H13A109.5
C7—C6—C5116.35 (16)C11—C13—H13B109.5
C7—C6—H6121.8H13A—C13—H13B109.5
C5—C6—H6121.8C11—C13—H13C109.5
C6—C7—O1124.87 (15)H13A—C13—H13C109.5
C6—C7—C2124.37 (16)H13B—C13—H13C109.5
O1—C7—C2110.75 (14)S—C14—H14A109.5
C1—C8—O1111.43 (14)S—C14—H14B109.5
C1—C8—C9132.54 (16)H14A—C14—H14B109.5
O1—C8—C9115.98 (14)S—C14—H14C109.5
C8—C9—C10112.79 (14)H14A—C14—H14C109.5
C8—C9—H9A109.0H14B—C14—H14C109.5
O4—S—C1—C8126.67 (15)C3—C2—C7—C60.0 (3)
C14—S—C1—C8122.54 (15)C1—C2—C7—C6178.66 (16)
O4—S—C1—C250.55 (18)C3—C2—C7—O1178.64 (14)
C14—S—C1—C260.23 (18)C1—C2—C7—O10.01 (18)
C8—C1—C2—C70.17 (18)C2—C1—C8—O10.27 (19)
S—C1—C2—C7177.69 (14)S—C1—C8—O1178.10 (11)
C8—C1—C2—C3178.44 (19)C2—C1—C8—C9177.57 (17)
S—C1—C2—C34.0 (3)S—C1—C8—C94.6 (3)
C7—C2—C3—C40.1 (2)C7—O1—C8—C10.26 (18)
C1—C2—C3—C4178.20 (18)C7—O1—C8—C9178.05 (14)
C2—C3—C4—F178.87 (15)C1—C8—C9—C1069.4 (2)
C2—C3—C4—C50.0 (3)O1—C8—C9—C10107.82 (16)
F—C4—C5—C6178.67 (16)C11—O2—C10—O33.7 (2)
C3—C4—C5—C60.2 (3)C11—O2—C10—C9178.11 (14)
C4—C5—C6—C70.3 (3)C8—C9—C10—O313.5 (2)
C5—C6—C7—O1178.66 (15)C8—C9—C10—O2168.35 (14)
C5—C6—C7—C20.2 (3)C10—O2—C11—C12154.84 (15)
C8—O1—C7—C6178.81 (16)C10—O2—C11—C1383.45 (19)
C8—O1—C7—C20.15 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.503.370 (2)155
C6—H6···O2ii0.932.543.369 (2)149
C9—H9B···O4iii0.972.263.228 (2)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15FO4S
Mr298.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.6332 (6), 14.9522 (7), 8.2333 (4)
β (°) 102.277 (1)
V3)1399.36 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.940, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
12229, 3173, 2476
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.09
No. of reflections3173
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.39

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXL97 (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.503.370 (2)155.3
C6—H6···O2ii0.932.543.369 (2)148.6
C9—H9B···O4iii0.972.263.228 (2)176.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y+1/2, z+1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds