metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­tris­(1H-benzimidazole-κN3)(di­chloro­acetato-κO)copper(II) di­chloro­acetate dihydrate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 21 August 2009; accepted 22 September 2009; online 26 September 2009)

The title compound, [Cu(C2HCl2O2)(C7H6N2)3(H2O)]C2HCl2O2·2H2O, was prepared by reaction of copper(II) 2,2-dichloro­acetic acid and benzimidazole in ethanol solution. The compound shows a regular trigonal–bipyramidal stereochemistry. The CuII centre possesses a five-coordinated environment, coordinated by three N atoms from the three benzimidazole ligands and two O atoms, one from the dichloro­acetate ligand and the other from the coordinated water mol­ecule. The mol­ecular structure and packing are stabilized by O—H⋯O and N—H⋯O hydrogen bonds. The Cl atoms are disordered over two sites, with relative occupancies 0.67 (3) and 0.33 (3).

Related literature

For background to penta-coordinated copper complexes, see: Tyagi et al. (1984[Tyagi, S., Hathaway, B., Kremer, S., Stratemeier, H. & Reinen, D. (1984). J. Chem. Soc. Dalton Trans. pp. 2087-2091.]). For a related compound, see: Barszcz et al. (2004[Barszcz, B., Glowiak, T., Jezierska, J. & Tomkiewicz, A. (2004). Polyhedron, 23, 1308-1316.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2HCl2O2)(C7H6N2)3(H2O)]C2HCl2O2·2H2O

  • Mr = 727.86

  • Monoclinic, P 21 /n

  • a = 9.6027 (16) Å

  • b = 8.6957 (15) Å

  • c = 37.799 (6) Å

  • β = 93.945 (3)°

  • V = 3148.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 19614 measured reflections

  • 7576 independent reflections

  • 5174 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.04

  • 7576 reflections

  • 488 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1B⋯O3i 0.808 (18) 1.955 (18) 2.763 (3) 178 (4)
O1W—H1C⋯O2W 0.802 (18) 2.18 (2) 2.949 (3) 162 (3)
N2—H2⋯O2Wii 0.820 (17) 2.08 (2) 2.873 (3) 162 (3)
N4—H4⋯O3Wiii 0.856 (18) 2.00 (2) 2.842 (3) 166 (4)
N6—H6⋯O2iv 0.836 (18) 1.991 (19) 2.826 (3) 176 (3)
O2W—H2B⋯O3W 0.835 (18) 2.01 (2) 2.832 (3) 168 (4)
O2W—H2C⋯O4iv 0.810 (18) 2.080 (19) 2.886 (3) 172 (4)
O3W—H3B⋯O3 0.831 (17) 2.01 (2) 2.813 (4) 164 (3)
O3W—H3C⋯O4i 0.841 (17) 1.925 (18) 2.757 (3) 170 (4)
C15—H15A⋯O2 0.91 (3) 2.58 (3) 3.416 (4) 152 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The penta-coordinated copper complexes have been attracting great interest for their diverse stereo and physicochemical properties (Tyagi et al., 1984). Therefore the coordination chemistry of Cu(II) with ligands is of great interest. In this paper, we reported the synthesis and crystal structure of the title compound.

In the crystal structure of the title compound (Fig. 1), all the bond length and angle are in the normal range. (Barszcz et al., 2004). The title compound consists of discrete monovalent complex cations, dichloroacetic acid anion and solvent water molecules. The dichloroacetic ions appear to be loosely held in lattice holes by Coulombic forces and by weak hydrogen bonds to the solvent water molecules. The interionic hydrogen bonds play an important role in the crystal packing and the stability of the complex. The Cl1 and Cl2 atoms are disordered.

Related literature top

For background to penta-coordinated copper complexes, see: Tyagi et al. (1984). For a related compound, see: Barszcz et al. (2004).

Experimental top

Solid copper(II) 2,2-dicholoracetate, C4H2Cl4Cu1O4 0.32 g (1 mmol) and benzimidazole 0.35 g (3 mmol) were added in 50 ml anhydrous alcohol under stirring. The mixture was refluxed for 5 h. The blue solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, a blue crystalline solid appeared three days later and was separated by filtration. Determined by X-ray crystallography.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq of the parent atoms. The Cl1 atom and Cl2 atom are disordered over two sites, with relative occupancies 0.672 (34) and 0.328 (34).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.
Aquatris(1H-benzimidazole-κN3)(dichloroacetato- κO)copper(II) dichloroacetate dihydrate top
Crystal data top
[Cu(C2HCl2O2)(C7H6N2)3(H2O)]C2HCl2O2·2H2OF(000) = 1484
Mr = 727.86Dx = 1.535 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2360 reflections
a = 9.6027 (16) Åθ = 2.3–28.2°
b = 8.6957 (15) ŵ = 1.09 mm1
c = 37.799 (6) ÅT = 293 K
β = 93.945 (3)°Block, blue
V = 3148.8 (9) Å30.23 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5174 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 28.2°, θmin = 2.2°
ϕ and ω scansh = 1210
19614 measured reflectionsk = 1111
7576 independent reflectionsl = 3450
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0529P)2 + 1.2061P]
where P = (Fo2 + 2Fc2)/3
7576 reflections(Δ/σ)max = 0.001
488 parametersΔρmax = 1.00 e Å3
10 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cu(C2HCl2O2)(C7H6N2)3(H2O)]C2HCl2O2·2H2OV = 3148.8 (9) Å3
Mr = 727.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6027 (16) ŵ = 1.09 mm1
b = 8.6957 (15) ÅT = 293 K
c = 37.799 (6) Å0.23 × 0.20 × 0.18 mm
β = 93.945 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5174 reflections with I > 2σ(I)
19614 measured reflectionsRint = 0.036
7576 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04710 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.00 e Å3
7576 reflectionsΔρmin = 0.59 e Å3
488 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.55853 (3)0.58911 (4)0.621230 (8)0.03147 (11)
Cl1A0.8686 (6)0.1449 (6)0.63210 (11)0.0763 (11)0.67 (3)
Cl2A0.9346 (9)0.2214 (14)0.56111 (10)0.087 (2)0.67 (3)
Cl1B0.8843 (14)0.1269 (15)0.6237 (7)0.107 (4)0.33 (3)
Cl2B0.9719 (14)0.298 (3)0.5610 (2)0.096 (3)0.33 (3)
O10.7499 (2)0.5103 (2)0.61458 (6)0.0418 (5)
O20.6514 (2)0.3248 (2)0.58070 (6)0.0461 (5)
O1W0.6458 (2)0.7384 (3)0.66834 (6)0.0456 (5)
H1B0.619 (3)0.741 (4)0.6881 (6)0.055*
H1C0.729 (2)0.749 (4)0.6710 (9)0.055*
N10.3528 (2)0.6367 (3)0.62332 (6)0.0353 (5)
N20.1489 (3)0.6637 (3)0.64701 (7)0.0439 (6)
H20.096 (3)0.671 (4)0.6629 (7)0.044 (9)*
N30.5337 (2)0.4060 (3)0.65180 (6)0.0352 (5)
N40.5672 (3)0.2358 (3)0.69497 (7)0.0430 (6)
H40.603 (3)0.193 (4)0.7139 (7)0.066 (12)*
N50.5864 (2)0.7632 (3)0.58822 (6)0.0319 (5)
N60.6065 (3)1.0057 (3)0.57153 (7)0.0407 (6)
H60.619 (4)1.100 (2)0.5752 (9)0.058 (11)*
C10.2615 (3)0.6892 (4)0.55998 (9)0.0503 (8)
H1A0.353 (4)0.666 (4)0.5496 (9)0.060*
C20.1406 (4)0.7264 (6)0.53993 (11)0.0736 (13)
H2A0.145 (4)0.736 (5)0.5136 (11)0.088*
C30.0141 (4)0.7475 (6)0.55558 (13)0.0830 (14)
H3A0.060 (3)0.783 (5)0.5426 (10)0.100*
C40.0025 (4)0.7312 (5)0.59114 (12)0.0609 (10)
H4A0.085 (4)0.737 (4)0.6013 (10)0.073*
C50.1233 (3)0.6914 (3)0.61125 (9)0.0409 (7)
C60.2516 (3)0.6730 (3)0.59624 (8)0.0364 (6)
C70.2861 (3)0.6327 (4)0.65275 (9)0.0430 (7)
H6A0.330 (3)0.608 (4)0.6749 (9)0.052*
C80.3385 (3)0.2603 (4)0.61785 (8)0.0408 (7)
H8A0.323 (3)0.327 (4)0.6009 (9)0.049*
C90.2590 (3)0.1300 (4)0.61945 (10)0.0486 (8)
H9A0.188 (4)0.110 (4)0.6006 (9)0.058*
C100.2782 (4)0.0263 (4)0.64766 (10)0.0515 (9)
H10A0.219 (4)0.060 (4)0.6483 (9)0.062*
C110.3790 (4)0.0449 (4)0.67445 (9)0.0459 (8)
H11A0.397 (3)0.027 (4)0.6935 (9)0.055*
C120.4602 (3)0.1785 (3)0.67299 (7)0.0347 (6)
C130.4394 (3)0.2852 (3)0.64544 (7)0.0330 (6)
C140.6067 (3)0.3692 (4)0.68129 (8)0.0413 (7)
H14A0.685 (3)0.428 (4)0.6910 (8)0.050*
C150.6404 (4)0.6474 (4)0.52901 (8)0.0463 (8)
H15A0.634 (3)0.546 (4)0.5351 (9)0.056*
C160.6743 (4)0.6869 (5)0.49547 (9)0.0633 (10)
H16A0.690 (4)0.609 (5)0.4791 (11)0.076*
C170.6901 (4)0.8402 (5)0.48565 (9)0.0620 (10)
H17A0.717 (4)0.858 (4)0.4628 (10)0.074*
C180.6700 (4)0.9586 (5)0.50846 (9)0.0509 (9)
H18A0.683 (4)1.060 (4)0.5054 (9)0.061*
C190.6356 (3)0.9184 (3)0.54269 (7)0.0361 (6)
C200.6221 (3)0.7658 (3)0.55289 (7)0.0310 (6)
C210.5786 (3)0.9084 (4)0.59758 (8)0.0376 (6)
H21A0.559 (3)0.941 (4)0.6204 (8)0.045*
C220.7507 (3)0.3848 (3)0.59806 (8)0.0397 (7)
C230.8912 (4)0.3007 (4)0.60214 (9)0.0517 (8)
H230.963 (4)0.356 (4)0.6143 (9)0.062*
Cl31.08746 (13)0.35382 (14)0.69629 (3)0.0815 (3)
Cl41.26119 (11)0.22307 (19)0.75391 (3)0.0951 (4)
O30.9457 (3)0.2538 (3)0.76400 (7)0.0684 (8)
O40.9295 (3)0.0293 (3)0.73571 (7)0.0609 (7)
C240.9847 (3)0.1547 (4)0.74289 (8)0.0446 (7)
C251.1158 (3)0.1918 (4)0.72357 (9)0.0481 (8)
H251.136 (4)0.111 (4)0.7106 (9)0.058*
O2W0.9420 (3)0.7505 (3)0.69464 (6)0.0511 (6)
H2B0.924 (4)0.685 (3)0.7097 (8)0.061*
H2C0.946 (4)0.830 (3)0.7056 (9)0.061*
O3W0.8433 (2)0.5492 (3)0.74611 (6)0.0478 (5)
H3B0.878 (4)0.467 (3)0.7505 (10)0.057*
H3C0.762 (2)0.530 (4)0.7494 (10)0.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03492 (19)0.02875 (19)0.03115 (18)0.00259 (14)0.00518 (13)0.00311 (14)
Cl1A0.085 (2)0.070 (2)0.071 (3)0.0185 (14)0.0159 (12)0.0213 (11)
Cl2A0.073 (2)0.126 (4)0.0618 (12)0.044 (2)0.0070 (12)0.0200 (18)
Cl1B0.057 (4)0.039 (3)0.217 (10)0.003 (3)0.046 (5)0.023 (5)
Cl2B0.078 (4)0.136 (9)0.075 (3)0.024 (5)0.022 (3)0.024 (4)
O10.0390 (11)0.0322 (11)0.0552 (13)0.0025 (9)0.0103 (9)0.0024 (10)
O20.0464 (12)0.0340 (12)0.0569 (13)0.0046 (10)0.0030 (11)0.0003 (10)
O1W0.0436 (12)0.0581 (14)0.0352 (11)0.0098 (11)0.0024 (10)0.0060 (11)
N10.0392 (13)0.0310 (13)0.0363 (13)0.0004 (10)0.0078 (10)0.0054 (10)
N20.0443 (15)0.0372 (15)0.0529 (17)0.0025 (12)0.0223 (13)0.0032 (13)
N30.0381 (13)0.0335 (13)0.0338 (12)0.0063 (11)0.0001 (10)0.0037 (10)
N40.0485 (15)0.0453 (16)0.0346 (14)0.0015 (12)0.0015 (12)0.0098 (12)
N50.0365 (12)0.0289 (13)0.0308 (12)0.0034 (10)0.0065 (10)0.0005 (10)
N60.0528 (16)0.0266 (14)0.0429 (14)0.0026 (12)0.0058 (12)0.0014 (12)
C10.0384 (17)0.069 (2)0.0433 (18)0.0134 (17)0.0011 (14)0.0042 (17)
C20.048 (2)0.117 (4)0.054 (2)0.020 (2)0.0085 (18)0.020 (2)
C30.043 (2)0.117 (4)0.086 (3)0.012 (2)0.017 (2)0.027 (3)
C40.0322 (18)0.064 (2)0.087 (3)0.0074 (16)0.0059 (18)0.013 (2)
C50.0346 (16)0.0293 (16)0.060 (2)0.0075 (13)0.0093 (14)0.0026 (14)
C60.0340 (15)0.0343 (16)0.0415 (16)0.0073 (12)0.0054 (12)0.0032 (13)
C70.0467 (18)0.0417 (18)0.0420 (17)0.0009 (14)0.0138 (14)0.0073 (14)
C80.0416 (17)0.0400 (18)0.0405 (17)0.0003 (14)0.0002 (14)0.0006 (14)
C90.0414 (18)0.048 (2)0.057 (2)0.0067 (15)0.0028 (15)0.0142 (16)
C100.052 (2)0.0336 (18)0.072 (2)0.0095 (15)0.0215 (18)0.0107 (17)
C110.058 (2)0.0296 (16)0.053 (2)0.0030 (15)0.0230 (17)0.0041 (14)
C120.0381 (15)0.0333 (16)0.0334 (15)0.0015 (12)0.0087 (12)0.0015 (12)
C130.0348 (15)0.0303 (15)0.0345 (15)0.0005 (12)0.0050 (12)0.0019 (12)
C140.0432 (17)0.0438 (19)0.0360 (16)0.0045 (14)0.0034 (13)0.0069 (13)
C150.059 (2)0.0405 (18)0.0392 (17)0.0015 (16)0.0032 (15)0.0056 (15)
C160.084 (3)0.071 (3)0.0350 (18)0.008 (2)0.0089 (18)0.0110 (18)
C170.076 (3)0.082 (3)0.0288 (17)0.002 (2)0.0124 (17)0.0102 (18)
C180.057 (2)0.053 (2)0.0421 (18)0.0073 (17)0.0058 (16)0.0177 (17)
C190.0340 (14)0.0395 (17)0.0348 (15)0.0016 (13)0.0032 (12)0.0042 (13)
C200.0293 (13)0.0349 (16)0.0290 (13)0.0001 (11)0.0026 (11)0.0011 (11)
C210.0438 (16)0.0368 (16)0.0331 (15)0.0012 (13)0.0092 (13)0.0016 (13)
C220.0435 (17)0.0339 (18)0.0427 (17)0.0025 (13)0.0090 (14)0.0057 (13)
C230.0475 (19)0.052 (2)0.055 (2)0.0138 (16)0.0009 (16)0.0027 (17)
Cl30.1008 (8)0.0806 (7)0.0658 (6)0.0078 (6)0.0254 (6)0.0240 (6)
Cl40.0566 (6)0.1605 (13)0.0683 (7)0.0004 (7)0.0034 (5)0.0003 (7)
O30.0913 (19)0.0503 (15)0.0697 (16)0.0018 (13)0.0500 (15)0.0059 (13)
O40.0587 (15)0.0485 (15)0.0781 (17)0.0107 (12)0.0229 (13)0.0105 (13)
C240.0498 (18)0.0414 (19)0.0445 (18)0.0068 (15)0.0166 (15)0.0040 (15)
C250.0519 (19)0.049 (2)0.0458 (18)0.0027 (16)0.0185 (15)0.0044 (15)
O2W0.0505 (13)0.0561 (16)0.0482 (14)0.0009 (12)0.0135 (11)0.0052 (11)
O3W0.0425 (13)0.0501 (14)0.0508 (13)0.0010 (11)0.0027 (11)0.0071 (11)
Geometric parameters (Å, º) top
Cu1—N31.991 (2)C5—C61.400 (4)
Cu1—N51.992 (2)C7—H6A0.94 (3)
Cu1—O11.993 (2)C8—C91.370 (4)
Cu1—N12.025 (2)C8—C131.391 (4)
Cu1—O1W2.314 (2)C8—H8A0.87 (3)
Cl1A—C231.789 (6)C9—C101.399 (5)
Cl2A—C231.773 (5)C9—H9A0.97 (4)
Cl1B—C231.720 (11)C10—C111.361 (5)
Cl2B—C231.784 (9)C10—H10A0.94 (4)
O1—C221.257 (3)C11—C121.403 (4)
O2—C221.235 (4)C11—H11A0.96 (3)
O1W—H1B0.808 (18)C12—C131.399 (4)
O1W—H1C0.803 (18)C14—H14A0.96 (3)
N1—C71.322 (4)C15—C161.374 (5)
N1—C61.398 (4)C15—C201.388 (4)
N2—C71.347 (4)C15—H15A0.91 (3)
N2—C51.378 (4)C16—C171.395 (6)
N2—H20.820 (17)C16—H16A0.94 (4)
N3—C141.315 (4)C17—C181.365 (6)
N3—C131.397 (4)C17—H17A0.93 (4)
N4—C141.336 (4)C18—C191.401 (4)
N4—C121.370 (4)C18—H18A0.90 (4)
N4—H40.856 (18)C19—C201.391 (4)
N5—C211.315 (4)C21—H21A0.94 (3)
N5—C201.401 (3)C22—C231.533 (4)
N6—C211.339 (4)C23—H230.93 (4)
N6—C191.373 (4)Cl3—C251.756 (4)
N6—H60.835 (18)Cl4—C251.766 (4)
C1—C21.380 (5)O3—C241.249 (4)
C1—C61.388 (4)O4—C241.235 (4)
C1—H1A1.01 (3)C24—C251.532 (4)
C2—C31.400 (6)C25—H250.88 (3)
C2—H2A1.00 (4)O2W—H2B0.835 (18)
C3—C41.364 (6)O2W—H2C0.809 (18)
C3—H3A0.891 (19)O3W—H3B0.802 (18)
C4—C51.387 (5)O3W—H3C0.814 (18)
C4—H4A0.95 (4)
N3—Cu1—N5176.38 (9)C10—C11—C12116.0 (3)
N3—Cu1—O186.92 (9)C10—C11—H11A124 (2)
N5—Cu1—O191.01 (9)C12—C11—H11A120 (2)
N3—Cu1—N189.13 (9)N4—C12—C13105.8 (2)
N5—Cu1—N192.43 (9)N4—C12—C11132.3 (3)
O1—Cu1—N1170.17 (9)C13—C12—C11121.8 (3)
N3—Cu1—O1W93.07 (9)C8—C13—N3131.0 (3)
N5—Cu1—O1W89.91 (9)C8—C13—C12120.8 (3)
O1—Cu1—O1W90.11 (9)N3—C13—C12108.2 (2)
N1—Cu1—O1W99.09 (9)N3—C14—N4113.0 (3)
C22—O1—Cu1113.46 (19)N3—C14—H14A123 (2)
Cu1—O1W—H1B127 (3)N4—C14—H14A123.4 (19)
Cu1—O1W—H1C118 (3)C16—C15—C20117.6 (3)
H1B—O1W—H1C105 (4)C16—C15—H15A120 (2)
C7—N1—C6105.6 (2)C20—C15—H15A122 (2)
C7—N1—Cu1123.9 (2)C15—C16—C17121.4 (4)
C6—N1—Cu1130.43 (18)C15—C16—H16A119 (2)
C7—N2—C5107.4 (3)C17—C16—H16A119 (2)
C7—N2—H2123 (2)C18—C17—C16122.0 (3)
C5—N2—H2129 (2)C18—C17—H17A121 (3)
C14—N3—C13105.3 (2)C16—C17—H17A117 (2)
C14—N3—Cu1127.5 (2)C17—C18—C19116.6 (3)
C13—N3—Cu1127.11 (19)C17—C18—H18A129 (2)
C14—N4—C12107.6 (3)C19—C18—H18A114 (2)
C14—N4—H4127 (3)N6—C19—C20106.2 (2)
C12—N4—H4126 (3)N6—C19—C18132.0 (3)
C21—N5—C20105.3 (2)C20—C19—C18121.8 (3)
C21—N5—Cu1123.29 (19)C15—C20—C19120.6 (3)
C20—N5—Cu1131.40 (18)C15—C20—N5131.1 (3)
C21—N6—C19107.3 (3)C19—C20—N5108.2 (2)
C21—N6—H6122 (2)N5—C21—N6113.0 (3)
C19—N6—H6129 (2)N5—C21—H21A124 (2)
C2—C1—C6117.0 (3)N6—C21—H21A123 (2)
C2—C1—H1A123.8 (19)O2—C22—O1126.9 (3)
C6—C1—H1A119.0 (19)O2—C22—C23119.6 (3)
C1—C2—C3121.4 (4)O1—C22—C23113.5 (3)
C1—C2—H2A118 (2)C22—C23—Cl1B113.9 (7)
C3—C2—H2A120 (2)C22—C23—Cl2A110.8 (3)
C4—C3—C2122.3 (4)Cl1B—C23—Cl2A95.2 (7)
C4—C3—H3A117 (3)C22—C23—Cl2B110.6 (4)
C2—C3—H3A120 (3)Cl1B—C23—Cl2B115.6 (5)
C3—C4—C5116.4 (3)Cl2A—C23—Cl2B24.5 (5)
C3—C4—H4A122 (2)C22—C23—Cl1A106.3 (3)
C5—C4—H4A121 (2)Cl1B—C23—Cl1A12.7 (10)
N2—C5—C4131.9 (3)Cl2A—C23—Cl1A107.8 (4)
N2—C5—C6105.9 (3)Cl2B—C23—Cl1A128.3 (8)
C4—C5—C6122.2 (3)C22—C23—H23115 (2)
C1—C6—N1130.9 (3)Cl1B—C23—H23106 (2)
C1—C6—C5120.7 (3)Cl2A—C23—H23115 (2)
N1—C6—C5108.4 (2)Cl2B—C23—H2395 (2)
N1—C7—N2112.6 (3)Cl1A—C23—H23101 (2)
N1—C7—H6A123 (2)O4—C24—O3127.3 (3)
N2—C7—H6A124 (2)O4—C24—C25115.8 (3)
C9—C8—C13117.2 (3)O3—C24—C25116.9 (3)
C9—C8—H8A121 (2)C24—C25—Cl3110.5 (2)
C13—C8—H8A122 (2)C24—C25—Cl4111.2 (2)
C8—C9—C10121.5 (3)Cl3—C25—Cl4109.9 (2)
C8—C9—H9A119 (2)C24—C25—H25108 (2)
C10—C9—H9A120 (2)Cl3—C25—H25110 (2)
C11—C10—C9122.7 (3)Cl4—C25—H25107 (2)
C11—C10—H10A118 (2)H2B—O2W—H2C104 (4)
C9—C10—H10A119 (2)H3B—O3W—H3C100 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O3i0.81 (2)1.96 (2)2.763 (3)178 (4)
O1W—H1C···O2W0.80 (2)2.18 (2)2.949 (3)162 (3)
N2—H2···O2Wii0.82 (2)2.08 (2)2.873 (3)162 (3)
N4—H4···O3Wiii0.86 (2)2.00 (2)2.842 (3)166 (4)
N6—H6···O2iv0.84 (2)1.99 (2)2.826 (3)176 (3)
O2W—H2B···O3W0.84 (2)2.01 (2)2.832 (3)168 (4)
O2W—H2C···O4iv0.81 (2)2.08 (2)2.886 (3)172 (4)
O3W—H3B···O30.83 (2)2.01 (2)2.813 (4)164 (3)
O3W—H3C···O4i0.84 (2)1.93 (2)2.757 (3)170 (4)
C15—H15A···O20.91 (3)2.58 (3)3.416 (4)152 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+3/2, y1/2, z+3/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C2HCl2O2)(C7H6N2)3(H2O)]C2HCl2O2·2H2O
Mr727.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6027 (16), 8.6957 (15), 37.799 (6)
β (°) 93.945 (3)
V3)3148.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19614, 7576, 5174
Rint0.036
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.04
No. of reflections7576
No. of parameters488
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.00, 0.59

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O3i0.808 (18)1.955 (18)2.763 (3)178 (4)
O1W—H1C···O2W0.802 (18)2.18 (2)2.949 (3)162 (3)
N2—H2···O2Wii0.820 (17)2.08 (2)2.873 (3)162 (3)
N4—H4···O3Wiii0.856 (18)2.00 (2)2.842 (3)166 (4)
N6—H6···O2iv0.836 (18)1.991 (19)2.826 (3)176 (3)
O2W—H2B···O3W0.835 (18)2.01 (2)2.832 (3)168 (4)
O2W—H2C···O4iv0.810 (18)2.080 (19)2.886 (3)172 (4)
O3W—H3B···O30.831 (17)2.01 (2)2.813 (4)164 (3)
O3W—H3C···O4i0.841 (17)1.925 (18)2.757 (3)170 (4)
C15—H15A···O20.91 (3)2.58 (3)3.416 (4)152 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+3/2, y1/2, z+3/2; (iv) x, y+1, z.
 

Acknowledgements

The authors thank the Science Foundation of Weifang University (grant No. 2009Z24). Thanks are also extended to Hai-Xing Liu for help with preparing the CIF.

References

First citationBarszcz, B., Glowiak, T., Jezierska, J. & Tomkiewicz, A. (2004). Polyhedron, 23, 1308–1316.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTyagi, S., Hathaway, B., Kremer, S., Stratemeier, H. & Reinen, D. (1984). J. Chem. Soc. Dalton Trans. pp. 2087–2091.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds