inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trineodymium(III) penta­iron(III) dodeca­oxide, Nd3Fe5O12

aGraduate School of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Japan, and bHokkaido University of Education HAKODATE, Yahata-cho, Hakodate-shi, Japan
*Correspondence e-mail: tkomori@katch.ne.jp

(Received 3 September 2009; accepted 11 September 2009; online 26 September 2009)

The title compound, Nd3Fe5O12 (NdIG), has an iron garnet structure. One of the Fe atoms is coordinated by six O atoms in a slightly distorted octa­hedral geometry and has [\overline{3}] site symmetry. The other Fe atom is coordinated by four O atoms in a slightly distorted tetra­hedral geometry and has [\overline{4}] site symmetry. The FeO6 octa­hedron and FeO4 tetra­hedron are linked together by corners. The Nd atom is coordinated by eight O atoms in a distorted dodeca­hedral geometry and has 222 site symmetry. The O atoms occupy general positions.

Related literature

The title compound is isotypic with the Ia[\overline{3}]d form of Y3Fe5O12 (YIG), see: Bonnet et al. (1975[Bonnet, M., Delapalme, A., Fuess, H. & Thomas, M. (1975). Acta Cryst. B31, 2233-2240.]). For crystal growth from low-temperature liquid-phase epitaxy, see: Fratello et al. (1986[Fratello, V. J., Brandle, C. D., Slusky, S. E. G., Valentino, A. J., Norelli, M. P. & Wolfe, R. (1986). Cryst. Growth, 75, 281-283.]). X-ray intensities were measured avoiding multiple diffraction, see: Takenaka et al. (2008[Takenaka, Y., Sakakura, T., Tanaka, K. & Kishimoto, S. (2008). Acta Cryst. A64, C566.]). For details of the full-matrix least-squares program QNTAO, see: Tanaka et al. (2008[Tanaka, K., Makita, R., Funahashi, S., Komori, T. & Zaw Win (2008). Acta Cryst. A64, 437-449.]). For the anisotropic extinction refinement, see: Becker & Coppens (1975[Becker, P. J. & Coppens, P. (1975). Acta Cryst. A31, 417-425.]).

Experimental

Crystal data
  • Nd3Fe5O12

  • Mr = 903.97

  • Cubic, [I a \overline 3d ]

  • a = 12.6128 (2) Å

  • V = 2006.48 (6) Å3

  • Z = 8

  • Synchrotron radiation

  • λ = 0.67171 Å

  • μ = 18.30 mm−1

  • T = 298 K

  • 0.025 mm (radius)

Data collection
  • Rigaku AFC four-circle diffractometer

  • Absorption correction: spherical [transmission coefficients for spheres tabulated in International Tables C (1992[International Tables for X-ray Crystallography, Vol. C (1992). Birmingham: Kynoch Press.]), Table 6.3.3.3, were interpolated with Lagrange's method (four point interpolation; Yamauchi et al., 1965[Yamauchi, J., Moriguchi, S. & Ichimatsu, S. (1965). Numerical calculation methods for computers. Tokyo: Baifūkan.])] Tmin = 0.502, Tmax = 0.527

  • 6653 measured reflections

  • 1159 independent reflections

  • 1159 reflections with F > 3σ(F)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.018

  • S = 1.42

  • 6653 reflections

  • 23 parameters

  • Δρmax = 1.61 e Å−3

  • Δρmin = −1.75 e Å−3

Table 1
Selected geometric parameters (Å, °)

Nd1—O1 2.41820 (10)
Nd1—O1i 2.52960 (10)
Fe1—O1 2.03300 (10)
Fe2—O1ii 1.87550 (10)
O1—Fe1—O1i 85.59 (1)
O1ii—Fe2—O1iii 114.47 (1)
O1ii—Fe2—O1iv 99.87 (1)
Symmetry codes: (i) z, x, y; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 4}}, z-{\script{1\over 4}}, y+{\script{1\over 4}}]; (iv) [x+{\script{1\over 2}}, -y, z].

Data collection: AFC-5, specially designed for PF-BL14A (Rigaku Corporation, 1984[Rigaku Corporation (1984). AFC-5. Rigaku Corporation, Tokyo, Japan.]) and IUANGLE (Tanaka et al., 1994[Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. & Shirotani, I. (1994). Acta Cryst. A50, 246-252.]).; cell refinement: RSLC-3 (Sakurai & Kobayashi, 1979[Sakurai, T. & Kobayashi, K. (1979). Rep. Inst. Phys. Chem. Res. 55, 69-77.]); data reduction: RDEDIT (Tanaka, 2008[Tanaka, K. (2008). RDEDIT. Unpublished.]); program(s) used to solve structure: QNTAO (Tanaka et al., 2008[Tanaka, K., Makita, R., Funahashi, S., Komori, T. & Zaw Win (2008). Acta Cryst. A64, 437-449.]); program(s) used to refine structure: QNTAO (Tanaka et al., 2008[Tanaka, K., Makita, R., Funahashi, S., Komori, T. & Zaw Win (2008). Acta Cryst. A64, 437-449.]); molecular graphics: ATOMS for Windows (Dowty, 2000[Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: RDEDIT.

Supporting information


Comment top

The title compound, Nd3Fe5O12 (NdIG), was difficult to be grown. It was grown by the low-temperature-liquid-phase epitaxy for the first time by Fratello et al. (1986). Though the crystal structure was assumed as iron-garnet-type structure by lattice constant and extinction rule, the complete structure was not determined. In this paper, we determine the O atom position and the complete structure by the full matrix least-squares program QNTAO. Since the R-factor is small and the residual density has no significant peaks where no atoms exists, the structure was finally determined to be iron-garnet structure. It is isotypic with the Ia3d form of Y3Fe5O12 (YIG). (Bonnet et al., 1975). The Nd atom is coordinated by eight oxygen atoms. It forms a distorted dodecahedron. There are two Fe site symmetries. One of the Fe atom is coordinated by six oxygen atoms with site symmetry 3. It forms a slightly distorted octahedron. The other Fe atom is coordinated by four oxygen atoms, site symmetry 4. It forms a slightly distorted tetrahedron. FeO6 octahedron and FeO4 tetrahedron are linked together by corners. The structure of NdIG is drawn in Fig.1. And displacement ellipsoids of NdO8 is drawn in Fig.2.

Related literature top

The title compound is isotypic with the Ia3d form of Y3Fe5O12 (YIG), see: Bonnet et al. (1975). For crystal growth from low-temperature liquid-phase epitaxy, see: Fratello et al. (1986). X-ray intensities were measured avoiding multiple diffraction, see: Takenaka et al. (2008). For details of the full-matrix least-squares program QNTAO, see: Tanaka et al. (2008). For the anisotropic extinction refinement, see: Becker & Coppens (1975).

Experimental top

Single crystals of neodymium iron garnet were prepared by low temperature liquid phase epitaxy on Sm3(ScGa)5O12 seeds with lattice parameters near the projected values for NdIG.

Refinement top

The Becker–Coppens type 1 Gaussian anisotropic extinction parameters were employed (× 10-4 seconds). z11 = 10.2 (5), z22 = 10 (2), z33 = 12 (2), z12 = 1(1), z13 = -0.5 (7), z23 = -1(1). X-ray intensities were measured avoiding multiple diffraction. (Takenaka et al., 2008).

Computing details top

Data collection: AFC-5, specially designed for PF-BL14A (Rigaku Corporation, 1984) and IUANGLE (Tanaka et al., 1994).; cell refinement: RSLC-3 UNICS system (Sakurai & Kobayashi, 1979); data reduction: RDEDIT (Tanaka, 2008); program(s) used to solve structure: QNTAO (Tanaka et al., 2008); program(s) used to refine structure: QNTAO (Tanaka et al., 2008); molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: RDEDIT (Tanaka, 2008).

Figures top
[Figure 1] Fig. 1. The structure of Nd3Fe5O12. Small red and large green spheres represent O and Nd atoms, respectively. Purple octahedron and blue tetrahedron represent FeO6 and FeO4 units, respectively.
[Figure 2] Fig. 2. View of NdO8 with displacement ellipsoids at the 90% probability level. Green and red ellipsoids represent Nd and O atoms, in Fig.1.
Trineodymium(III) pentairon(III) dodecaoxide top
Crystal data top
Nd3Fe5O12Dx = 5.985 Mg m3
Mr = 903.97Synchrotron radiation, λ = 0.67171 Å
Cubic, Ia3dCell parameters from 24 reflections
Hall symbol: -I 4bd 2c 3θ = 35.7–42.4°
a = 12.6128 (2) ŵ = 18.30 mm1
V = 2006.48 (6) Å3T = 298 K
Z = 8Sphere, black
F(000) = 32480.03 mm (radius)
Data collection top
Rigaku AFC four-circle
diffractometer
1159 independent reflections
Si 111 monochromator1159 reflections with F > 3σ(F)
Detector resolution: 1.25×1.25 degrees pixels mm-1Rint = 0.017
ω/2θ scansθmax = 53.9°, θmin = 3.7°
Absorption correction: for a sphere
Transmission coefficients for spheres tabulated in International Tables C (1992\bbr00), Table 6.3.3.3, were interpolated with Lagrange's method (four point interpolation; Yamauchi et al., 1965).
h = 830
Tmin = 0.502, Tmax = 0.527k = 830
6653 measured reflectionsl = 830
Refinement top
Refinement on FPrimary atom site location: isomorphous structure methods
Least-squares matrix: fullWeighting scheme based on measured s.u.'s
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max = 0.003
wR(F2) = 0.018Δρmax = 1.61 e Å3
S = 1.42Δρmin = 1.75 e Å3
6653 reflectionsExtinction correction: (B-C type 1 Gaussian anisotropic; Becker & Coppens (1975)
23 parametersExtinction coefficient: 0.308 (5)
Crystal data top
Nd3Fe5O12Z = 8
Mr = 903.97Synchrotron radiation, λ = 0.67171 Å
Cubic, Ia3dµ = 18.30 mm1
a = 12.6128 (2) ÅT = 298 K
V = 2006.48 (6) Å30.03 mm (radius)
Data collection top
Rigaku AFC four-circle
diffractometer
1159 independent reflections
Absorption correction: for a sphere
Transmission coefficients for spheres tabulated in International Tables C (1992\bbr00), Table 6.3.3.3, were interpolated with Lagrange's method (four point interpolation; Yamauchi et al., 1965).
1159 reflections with F > 3σ(F)
Tmin = 0.502, Tmax = 0.527Rint = 0.017
6653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01623 parameters
wR(F2) = 0.018Δρmax = 1.61 e Å3
S = 1.42Δρmin = 1.75 e Å3
6653 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.1250000.0000000.2500000.00557 (1)
Fe10.0000000.0000000.0000000.00501 (1)
Fe20.3750000.0000000.2500000.00564 (1)
O10.029295 (2)0.053092 (2)0.149342 (2)0.00762 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.00421 (1)0.00525 (1)0.00525 (1)000.00121 (1)
Fe10.00501 (2)0.00501 (2)0.00501 (2)0.00024 (2)0.00024 (2)0.00024 (2)
Fe20.00442 (3)0.00625 (2)0.00625 (2)000
O10.00791 (8)0.00880 (9)0.00614 (7)0.00027 (7)0.00102 (6)0.00041 (7)
Geometric parameters (Å, º) top
Nd1—O12.4182 (1)Fe1—O1i2.0330 (1)
Nd1—O1i2.5296 (1)Fe1—O1viii2.0330 (1)
Nd1—O1ii2.4182 (1)Fe1—O1ix2.0330 (1)
Nd1—O1iii2.5296 (1)Fe1—O1x2.0330 (1)
Nd1—O1iv2.4182 (1)Fe1—O1xi2.0330 (1)
Nd1—O1v2.5296 (1)Fe2—O1xii1.8755 (1)
Nd1—O1vi2.4182 (1)Fe2—O1iv1.8755 (1)
Nd1—O1vii2.5296 (1)Fe2—O1xiii1.8755 (1)
Fe1—O12.0330 (1)Fe2—O1vi1.8755 (1)
O1—Nd1—O1i67.83 (1)O1—Fe1—O1viii85.59 (1)
O1—Nd1—O1ii72.82 (1)O1—Fe1—O1ix180.00
O1—Nd1—O1iii124.94 (1)O1—Fe1—O1x94.41 (1)
O1—Nd1—O1iv110.91 (1)O1—Fe1—O1xi94.41 (1)
O1—Nd1—O1v72.97 (1)O1xii—Fe2—O1vi114.47 (1)
O1—Nd1—O1vi159.79 (1)O1xii—Fe2—O1iv114.47 (1)
O1—Nd1—O1vii95.60 (1)O1xii—Fe2—O1xiii99.87 (1)
O1—Fe1—O1i85.59 (1)
Symmetry codes: (i) z, x, y; (ii) x, y, z+1/2; (iii) z, x, y+1/2; (iv) x+1/4, z+1/4, y+1/4; (v) z+1/4, y+1/4, x+1/4; (vi) x+1/4, z1/4, y+1/4; (vii) z+1/4, y1/4, x+1/4; (viii) y, z, x; (ix) x, y, z; (x) z, x, y; (xi) y, z, x; (xii) x+1/2, y, z+1/2; (xiii) x+1/2, y, z.

Experimental details

Crystal data
Chemical formulaNd3Fe5O12
Mr903.97
Crystal system, space groupCubic, Ia3d
Temperature (K)298
a (Å)12.6128 (2)
V3)2006.48 (6)
Z8
Radiation typeSynchrotron, λ = 0.67171 Å
µ (mm1)18.30
Crystal size (mm)0.03 (radius)
Data collection
DiffractometerRigaku AFC four-circle
diffractometer
Absorption correctionFor a sphere
Transmission coefficients for spheres tabulated in International Tables C (1992\bbr00), Table 6.3.3.3, were interpolated with Lagrange's method (four point interpolation; Yamauchi et al., 1965).
Tmin, Tmax0.502, 0.527
No. of measured, independent and
observed [F > 3σ(F)] reflections
6653, 1159, 1159
Rint0.017
(sin θ/λ)max1)1.202
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.018, 1.42
No. of reflections6653
No. of parameters23
No. of restraints?
Δρmax, Δρmin (e Å3)1.61, 1.75

Computer programs: AFC-5, specially designed for PF-BL14A (Rigaku Corporation, 1984) and IUANGLE (Tanaka et al., 1994)., RSLC-3 UNICS system (Sakurai & Kobayashi, 1979), RDEDIT (Tanaka, 2008), QNTAO (Tanaka et al., 2008), ATOMS for Windows (Dowty, 2000).

Selected geometric parameters (Å, º) top
Nd1—O12.4182 (1)Fe1—O12.0330 (1)
Nd1—O1i2.5296 (1)Fe2—O1ii1.8755 (1)
O1—Fe1—O1i85.59 (1)O1ii—Fe2—O1iv99.87 (1)
O1ii—Fe2—O1iii114.47 (1)
Symmetry codes: (i) z, x, y; (ii) x+1/2, y, z+1/2; (iii) x+1/4, z1/4, y+1/4; (iv) x+1/2, y, z.
 

Acknowledgements

The authors thank Dr V. J. Fratello for supplying the crystals.

References

First citationBecker, P. J. & Coppens, P. (1975). Acta Cryst. A31, 417–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBonnet, M., Delapalme, A., Fuess, H. & Thomas, M. (1975). Acta Cryst. B31, 2233–2240.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFratello, V. J., Brandle, C. D., Slusky, S. E. G., Valentino, A. J., Norelli, M. P. & Wolfe, R. (1986). Cryst. Growth, 75, 281–283.  CrossRef CAS Web of Science Google Scholar
First citationInternational Tables for X-ray Crystallography, Vol. C (1992). Birmingham: Kynoch Press.  Google Scholar
First citationRigaku Corporation (1984). AFC-5. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSakurai, T. & Kobayashi, K. (1979). Rep. Inst. Phys. Chem. Res. 55, 69–77.  Google Scholar
First citationTakenaka, Y., Sakakura, T., Tanaka, K. & Kishimoto, S. (2008). Acta Cryst. A64, C566.  CrossRef IUCr Journals Google Scholar
First citationTanaka, K. (2008). RDEDIT. Unpublished.  Google Scholar
First citationTanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. & Shirotani, I. (1994). Acta Cryst. A50, 246–252.  CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Makita, R., Funahashi, S., Komori, T. & Zaw Win (2008). Acta Cryst. A64, 437–449.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYamauchi, J., Moriguchi, S. & Ichimatsu, S. (1965). Numerical calculation methods for computers. Tokyo: Baifūkan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds