inorganic compounds
Trineodymium(III) pentairon(III) dodecaoxide, Nd_{3}Fe_{5}O_{12}
^{a}Graduate School of Materials Science and Engineering, Nagoya Institute of Technology, Gokisocho, Showaku, Japan, and ^{b}Hokkaido University of Education HAKODATE, Yahatacho, Hakodateshi, Japan
^{*}Correspondence email: tkomori@katch.ne.jp
The title compound, Nd_{3}Fe_{5}O_{12} (NdIG), has an iron garnet structure. One of the Fe atoms is coordinated by six O atoms in a slightly distorted octahedral geometry and has The other Fe atom is coordinated by four O atoms in a slightly distorted tetrahedral geometry and has The FeO_{6} octahedron and FeO_{4} tetrahedron are linked together by corners. The Nd atom is coordinated by eight O atoms in a distorted dodecahedral geometry and has 222 The O atoms occupy general positions.
Related literature
The title compound is isotypic with the Iad form of Y_{3}Fe_{5}O_{12} (YIG), see: Bonnet et al. (1975). For crystal growth from lowtemperature liquidphase see: Fratello et al. (1986). Xray intensities were measured avoiding multiple diffraction, see: Takenaka et al. (2008). For details of the fullmatrix leastsquares program QNTAO, see: Tanaka et al. (2008). For the anisotropic extinction see: Becker & Coppens (1975).
Experimental
Crystal data

Data collection
Refinement

Data collection: AFC5, specially designed for PFBL14A (Rigaku Corporation, 1984) and IUANGLE (Tanaka et al., 1994).; cell RSLC3 (Sakurai & Kobayashi, 1979); data reduction: RDEDIT (Tanaka, 2008); program(s) used to solve structure: QNTAO (Tanaka et al., 2008); program(s) used to refine structure: QNTAO (Tanaka et al., 2008); molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: RDEDIT.
Supporting information
10.1107/S1600536809036794/br2118sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809036794/br2118Isup2.hkl
Single crystals of neodymium iron garnet were prepared by low temperature liquid phase
on Sm_{3}(ScGa)_{5}O_{12} seeds with lattice parameters near the projected values for NdIG.The Becker–Coppens type 1 Gaussian anisotropic extinction parameters were employed (× 10^{4} seconds). z11 = 10.2 (5), z22 = 10 (2), z33 = 12 (2), z12 = 1(1), z13 = 0.5 (7), z23 = 1(1). Xray intensities were measured avoiding multiple diffraction. (Takenaka et al., 2008).
Data collection: AFC5, specially designed for PFBL14A (Rigaku Corporation, 1984) and IUANGLE (Tanaka et al., 1994).; cell
RSLC3 UNICS system (Sakurai & Kobayashi, 1979); data reduction: RDEDIT (Tanaka, 2008); program(s) used to solve structure: QNTAO (Tanaka et al., 2008); program(s) used to refine structure: QNTAO (Tanaka et al., 2008); molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: RDEDIT (Tanaka, 2008).Nd_{3}Fe_{5}O_{12}  D_{x} = 5.985 Mg m^{−}^{3} 
M_{r} = 903.97  Synchrotron radiation, λ = 0.67171 Å 
Cubic, Ia3d  Cell parameters from 24 reflections 
Hall symbol: I 4bd 2c 3  θ = 35.7–42.4° 
a = 12.6128 (2) Å  µ = 18.30 mm^{−}^{1} 
V = 2006.48 (6) Å^{3}  T = 298 K 
Z = 8  Sphere, black 
F(000) = 3248  0.03 mm (radius) 
Rigaku AFC fourcircle diffractometer  1159 independent reflections 
Si 111 monochromator  1159 reflections with F > 3σ(F) 
Detector resolution: 1.25×1.25 degrees pixels mm^{1}  R_{int} = 0.017 
ω/2θ scans  θ_{max} = 53.9°, θ_{min} = 3.7° 
Absorption correction: for a sphere Transmission coefficients for spheres tabulated in International Tables C (1992\bbr00), Table 6.3.3.3, were interpolated with Lagrange's method (four point interpolation; Yamauchi et al., 1965).  h = −8→30 
T_{min} = 0.502, T_{max} = 0.527  k = −8→30 
6653 measured reflections  l = −8→30 
Refinement on F  Primary atom site location: isomorphous structure methods 
Leastsquares matrix: full  Weighting scheme based on measured s.u.'s 
R[F^{2} > 2σ(F^{2})] = 0.016  (Δ/σ)_{max} = 0.003 
wR(F^{2}) = 0.018  Δρ_{max} = 1.61 e Å^{−}^{3} 
S = 1.42  Δρ_{min} = −1.75 e Å^{−}^{3} 
6653 reflections  Extinction correction: (BC type 1 Gaussian anisotropic; Becker & Coppens (1975) 
23 parameters  Extinction coefficient: 0.308 (5) 
Nd_{3}Fe_{5}O_{12}  Z = 8 
M_{r} = 903.97  Synchrotron radiation, λ = 0.67171 Å 
Cubic, Ia3d  µ = 18.30 mm^{−}^{1} 
a = 12.6128 (2) Å  T = 298 K 
V = 2006.48 (6) Å^{3}  0.03 mm (radius) 
Rigaku AFC fourcircle diffractometer  1159 independent reflections 
Absorption correction: for a sphere Transmission coefficients for spheres tabulated in International Tables C (1992\bbr00), Table 6.3.3.3, were interpolated with Lagrange's method (four point interpolation; Yamauchi et al., 1965).  1159 reflections with F > 3σ(F) 
T_{min} = 0.502, T_{max} = 0.527  R_{int} = 0.017 
6653 measured reflections 
R[F^{2} > 2σ(F^{2})] = 0.016  23 parameters 
wR(F^{2}) = 0.018  Δρ_{max} = 1.61 e Å^{−}^{3} 
S = 1.42  Δρ_{min} = −1.75 e Å^{−}^{3} 
6653 reflections 
x  y  z  U_{iso}*/U_{eq}  
Nd1  0.125000  0.000000  0.250000  0.00557 (1)  
Fe1  0.000000  0.000000  0.000000  0.00501 (1)  
Fe2  0.375000  0.000000  0.250000  0.00564 (1)  
O1  −0.029295 (2)  0.053092 (2)  0.149342 (2)  0.00762 (5) 
U^{11}  U^{22}  U^{33}  U^{12}  U^{13}  U^{23}  
Nd1  0.00421 (1)  0.00525 (1)  0.00525 (1)  0  0  0.00121 (1) 
Fe1  0.00501 (2)  0.00501 (2)  0.00501 (2)  −0.00024 (2)  −0.00024 (2)  −0.00024 (2) 
Fe2  0.00442 (3)  0.00625 (2)  0.00625 (2)  0  0  0 
O1  0.00791 (8)  0.00880 (9)  0.00614 (7)  −0.00027 (7)  0.00102 (6)  0.00041 (7) 
Nd1—O1  2.4182 (1)  Fe1—O1^{i}  2.0330 (1) 
Nd1—O1^{i}  2.5296 (1)  Fe1—O1^{viii}  2.0330 (1) 
Nd1—O1^{ii}  2.4182 (1)  Fe1—O1^{ix}  2.0330 (1) 
Nd1—O1^{iii}  2.5296 (1)  Fe1—O1^{x}  2.0330 (1) 
Nd1—O1^{iv}  2.4182 (1)  Fe1—O1^{xi}  2.0330 (1) 
Nd1—O1^{v}  2.5296 (1)  Fe2—O1^{xii}  1.8755 (1) 
Nd1—O1^{vi}  2.4182 (1)  Fe2—O1^{iv}  1.8755 (1) 
Nd1—O1^{vii}  2.5296 (1)  Fe2—O1^{xiii}  1.8755 (1) 
Fe1—O1  2.0330 (1)  Fe2—O1^{vi}  1.8755 (1) 
O1—Nd1—O1^{i}  67.83 (1)  O1—Fe1—O1^{viii}  85.59 (1) 
O1—Nd1—O1^{ii}  72.82 (1)  O1—Fe1—O1^{ix}  180.00 
O1—Nd1—O1^{iii}  124.94 (1)  O1—Fe1—O1^{x}  94.41 (1) 
O1—Nd1—O1^{iv}  110.91 (1)  O1—Fe1—O1^{xi}  94.41 (1) 
O1—Nd1—O1^{v}  72.97 (1)  O1^{xii}—Fe2—O1^{vi}  114.47 (1) 
O1—Nd1—O1^{vi}  159.79 (1)  O1^{xii}—Fe2—O1^{iv}  114.47 (1) 
O1—Nd1—O1^{vii}  95.60 (1)  O1^{xii}—Fe2—O1^{xiii}  99.87 (1) 
O1—Fe1—O1^{i}  85.59 (1) 
Symmetry codes: (i) z, x, y; (ii) x, −y, −z+1/2; (iii) z, −x, −y+1/2; (iv) −x+1/4, −z+1/4, −y+1/4; (v) −z+1/4, −y+1/4, −x+1/4; (vi) −x+1/4, z−1/4, y+1/4; (vii) −z+1/4, y−1/4, x+1/4; (viii) y, z, x; (ix) −x, −y, −z; (x) −z, −x, −y; (xi) −y, −z, −x; (xii) x+1/2, y, −z+1/2; (xiii) x+1/2, −y, z. 
Experimental details
Crystal data  
Chemical formula  Nd_{3}Fe_{5}O_{12} 
M_{r}  903.97 
Crystal system, space group  Cubic, Ia3d 
Temperature (K)  298 
a (Å)  12.6128 (2) 
V (Å^{3})  2006.48 (6) 
Z  8 
Radiation type  Synchrotron, λ = 0.67171 Å 
µ (mm^{−}^{1})  18.30 
Crystal size (mm)  0.03 (radius) 
Data collection  
Diffractometer  Rigaku AFC fourcircle diffractometer 
Absorption correction  For a sphere Transmission coefficients for spheres tabulated in International Tables C (1992\bbr00), Table 6.3.3.3, were interpolated with Lagrange's method (four point interpolation; Yamauchi et al., 1965). 
T_{min}, T_{max}  0.502, 0.527 
No. of measured, independent and observed [F > 3σ(F)] reflections  6653, 1159, 1159 
R_{int}  0.017 
(sin θ/λ)_{max} (Å^{−}^{1})  1.202 
Refinement  
R[F^{2} > 2σ(F^{2})], wR(F^{2}), S  0.016, 0.018, 1.42 
No. of reflections  6653 
No. of parameters  23 
No. of restraints  ? 
Δρ_{max}, Δρ_{min} (e Å^{−}^{3})  1.61, −1.75 
Computer programs: AFC5, specially designed for PFBL14A (Rigaku Corporation, 1984) and IUANGLE (Tanaka et al., 1994)., RSLC3 UNICS system (Sakurai & Kobayashi, 1979), RDEDIT (Tanaka, 2008), QNTAO (Tanaka et al., 2008), ATOMS for Windows (Dowty, 2000).
Nd1—O1  2.4182 (1)  Fe1—O1  2.0330 (1) 
Nd1—O1^{i}  2.5296 (1)  Fe2—O1^{ii}  1.8755 (1) 
O1—Fe1—O1^{i}  85.59 (1)  O1^{ii}—Fe2—O1^{iv}  99.87 (1) 
O1^{ii}—Fe2—O1^{iii}  114.47 (1) 
Symmetry codes: (i) z, x, y; (ii) x+1/2, y, −z+1/2; (iii) −x+1/4, z−1/4, y+1/4; (iv) x+1/2, −y, z. 
Acknowledgements
The authors thank Dr V. J. Fratello for supplying the crystals.
References
Becker, P. J. & Coppens, P. (1975). Acta Cryst. A31, 417–425. CrossRef CAS IUCr Journals Web of Science Google Scholar
Bonnet, M., Delapalme, A., Fuess, H. & Thomas, M. (1975). Acta Cryst. B31, 2233–2240. CrossRef CAS IUCr Journals Web of Science Google Scholar
Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Fratello, V. J., Brandle, C. D., Slusky, S. E. G., Valentino, A. J., Norelli, M. P. & Wolfe, R. (1986). Cryst. Growth, 75, 281–283. CrossRef CAS Web of Science Google Scholar
International Tables for Xray Crystallography, Vol. C (1992). Birmingham: Kynoch Press. Google Scholar
Rigaku Corporation (1984). AFC5. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sakurai, T. & Kobayashi, K. (1979). Rep. Inst. Phys. Chem. Res. 55, 69–77. Google Scholar
Takenaka, Y., Sakakura, T., Tanaka, K. & Kishimoto, S. (2008). Acta Cryst. A64, C566. CrossRef IUCr Journals Google Scholar
Tanaka, K. (2008). RDEDIT. Unpublished. Google Scholar
Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. & Shirotani, I. (1994). Acta Cryst. A50, 246–252. CrossRef CAS IUCr Journals Google Scholar
Tanaka, K., Makita, R., Funahashi, S., Komori, T. & Zaw Win (2008). Acta Cryst. A64, 437–449. Web of Science CrossRef IUCr Journals Google Scholar
Yamauchi, J., Moriguchi, S. & Ichimatsu, S. (1965). Numerical calculation methods for computers. Tokyo: Baifūkan. Google Scholar
This is an openaccess article distributed under the terms of the Creative Commons Attribution (CCBY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, Nd_{3}Fe_{5}O_{12} (NdIG), was difficult to be grown. It was grown by the lowtemperatureliquidphase epitaxy for the first time by Fratello et al. (1986). Though the crystal structure was assumed as irongarnettype structure by lattice constant and extinction rule, the complete structure was not determined. In this paper, we determine the O atom position and the complete structure by the full matrix leastsquares program QNTAO. Since the Rfactor is small and the residual density has no significant peaks where no atoms exists, the structure was finally determined to be irongarnet structure. It is isotypic with the Ia3d form of Y_{3}Fe_{5}O_{12} (YIG). (Bonnet et al., 1975). The Nd atom is coordinated by eight oxygen atoms. It forms a distorted dodecahedron. There are two Fe site symmetries. One of the Fe atom is coordinated by six oxygen atoms with site symmetry 3. It forms a slightly distorted octahedron. The other Fe atom is coordinated by four oxygen atoms, site symmetry 4. It forms a slightly distorted tetrahedron. FeO_{6} octahedron and FeO_{4} tetrahedron are linked together by corners. The structure of NdIG is drawn in Fig.1. And displacement ellipsoids of NdO_{8} is drawn in Fig.2.