organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Azinodi­benzoic acid

aFood Science and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, People's Republic of China, and bDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: yunyuliu888@yahoo.com.cn

(Received 13 August 2009; accepted 20 August 2009; online 5 September 2009)

The title compound, C14H10N2O4, shows crystallographic inversion symmetry and has one half-mol­ecule in the asymmetric unit. In the crystal, mol­ecules are linked into chains running along the cell diagonal by O—H⋯O hydrogen-bonding inter­actions.

Related literature

For the use of azodibenzoate-based systems as bridging aromatic carboxyl­ate ligands in coordination networks, see: Chen et al. (2008[Chen, Z.-F., Zhang, Z.-L., Tan, Y.-H., Tang, Y.-Z., Fun, H.-K., Zhou, Z.-Y., Abrahams, B. F. & Liang, H. (2008). CrystEngComm, 10, 217-231.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O4

  • Mr = 270.16

  • Triclinic, [P \overline 1]

  • a = 3.772 (2) Å

  • b = 6.322 (5) Å

  • c = 12.692 (3) Å

  • α = 79.323 (5)°

  • β = 88.199 (4)°

  • γ = 88.435 (5)°

  • V = 297.2 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.971

  • 2173 measured reflections

  • 1351 independent reflections

  • 786 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 0.86

  • 1351 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 1.81 2.6181 (17) 170
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Azodibenzoate-based systems represent one type of bridging aromatic carboxylate ligand employed in the generation of coordination networks (Chen et al., 2008). There is half a molecule in the asymmetric unit of the title compound (Fig. 1). In the crystal, molecules are linked into chains by O—H···O hydrogen-bonding interactions (Table 2).

Related literature top

For the use of azodibenzoate-based systems as bridging aromatic carboxylate ligands in coordination networks, see: Chen et al. (2008).

Experimental top

A mixture of ZnCl2.2H2O (0.5 mmol), 4,4'-azodibenzoatic acid (0.5 mmol), and H2O (500 mmol) was heated at 140 oC for 3 days. After the mixture was slowly cooled to room temperature, pale yellow crystals of the title compound were yielded (22% yield).

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) -x, -y, -z.
4,4'-Azinodibenzoic acid top
Crystal data top
C14H10N2O4Z = 1
Mr = 270.16F(000) = 140
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.772 (2) ÅCell parameters from 1351 reflections
b = 6.322 (5) Åθ = 3.0–29.0°
c = 12.692 (3) ŵ = 0.11 mm1
α = 79.323 (5)°T = 293 K
β = 88.199 (4)°Block, pale yellow
γ = 88.435 (5)°0.16 × 0.14 × 0.12 mm
V = 297.2 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1351 independent reflections
Radiation source: fine-focus sealed tube786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 29.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
h = 54
Tmin = 0.962, Tmax = 0.971k = 85
2173 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0555P)2]
where P = (Fo2 + 2Fc2)/3
1351 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H10N2O4γ = 88.435 (5)°
Mr = 270.16V = 297.2 (3) Å3
Triclinic, P1Z = 1
a = 3.772 (2) ÅMo Kα radiation
b = 6.322 (5) ŵ = 0.11 mm1
c = 12.692 (3) ÅT = 293 K
α = 79.323 (5)°0.16 × 0.14 × 0.12 mm
β = 88.199 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1351 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
786 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.971Rint = 0.017
2173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.86Δρmax = 0.19 e Å3
1351 reflectionsΔρmin = 0.19 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0410 (4)0.0391 (3)0.23081 (12)0.0356 (4)
H10.05140.17670.24500.043*
C20.1284 (4)0.0608 (3)0.31492 (12)0.0343 (4)
H20.09240.00900.38550.041*
C30.2692 (4)0.2646 (2)0.29319 (11)0.0292 (4)
C40.3691 (4)0.3697 (2)0.38301 (12)0.0315 (4)
C50.3203 (4)0.3700 (2)0.18790 (12)0.0337 (4)
H50.41470.50700.17380.040*
C60.2312 (4)0.2720 (3)0.10404 (12)0.0355 (4)
H60.26400.34260.03340.043*
C70.0913 (4)0.0659 (2)0.12647 (12)0.0315 (4)
N10.0103 (4)0.0518 (2)0.04644 (9)0.0372 (4)
O10.2870 (4)0.2717 (2)0.47782 (9)0.0545 (4)
H1A0.35240.34170.52170.082*
O20.5255 (3)0.54435 (18)0.36449 (9)0.0453 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0452 (10)0.0306 (9)0.0329 (9)0.0099 (7)0.0026 (7)0.0095 (7)
C20.0438 (10)0.0360 (9)0.0243 (8)0.0081 (8)0.0014 (7)0.0072 (7)
C30.0321 (9)0.0322 (8)0.0261 (8)0.0037 (7)0.0030 (6)0.0115 (7)
C40.0377 (9)0.0334 (9)0.0253 (8)0.0060 (7)0.0040 (6)0.0092 (7)
C50.0436 (10)0.0295 (8)0.0299 (9)0.0082 (7)0.0009 (7)0.0092 (7)
C60.0465 (10)0.0376 (9)0.0240 (8)0.0067 (7)0.0030 (7)0.0084 (7)
C70.0333 (9)0.0349 (9)0.0299 (9)0.0023 (7)0.0048 (7)0.0144 (7)
N10.0471 (8)0.0382 (8)0.0300 (7)0.0081 (7)0.0058 (7)0.0143 (6)
O10.0875 (10)0.0544 (8)0.0254 (6)0.0314 (7)0.0023 (6)0.0128 (6)
O20.0674 (8)0.0397 (7)0.0321 (7)0.0215 (6)0.0027 (6)0.0119 (5)
Geometric parameters (Å, º) top
C1—C71.377 (2)C4—O11.2800 (18)
C1—C21.389 (2)C5—C61.381 (2)
C1—H10.9300C5—H50.9300
C2—C31.384 (2)C6—C71.396 (2)
C2—H20.9300C6—H60.9300
C3—C51.388 (2)C7—N11.4327 (19)
C3—C41.485 (2)N1—N1i1.239 (2)
C4—O21.246 (2)O1—H1A0.8200
C7—C1—C2119.91 (16)C6—C5—C3120.22 (15)
C7—C1—H1120.0C6—C5—H5119.9
C2—C1—H1120.0C3—C5—H5119.9
C3—C2—C1119.70 (15)C5—C6—C7119.22 (15)
C3—C2—H2120.2C5—C6—H6120.4
C1—C2—H2120.2C7—C6—H6120.4
C2—C3—C5120.28 (14)C1—C7—C6120.67 (14)
C2—C3—C4119.73 (14)C1—C7—N1115.05 (15)
C5—C3—C4119.99 (15)C6—C7—N1124.28 (14)
O2—C4—O1123.10 (14)N1i—N1—C7114.04 (17)
O2—C4—C3120.27 (14)C4—O1—H1A109.5
O1—C4—C3116.63 (15)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2ii0.821.812.6181 (17)170
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H10N2O4
Mr270.16
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)3.772 (2), 6.322 (5), 12.692 (3)
α, β, γ (°)79.323 (5), 88.199 (4), 88.435 (5)
V3)297.2 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick 1996)
Tmin, Tmax0.962, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
2173, 1351, 786
Rint0.017
(sin θ/λ)max1)0.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 0.86
No. of reflections1351
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.812.6181 (17)170.0
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Zhejiang Ocean University and the Science Foundation for Young Teachers of Northeast Normal University (No. 20080305) for support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-F., Zhang, Z.-L., Tan, Y.-H., Tang, Y.-Z., Fun, H.-K., Zhou, Z.-Y., Abrahams, B. F. & Liang, H. (2008). CrystEngComm, 10, 217–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds