organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-2-oxo-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepine-5-carbaldehyde

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 19 August 2009; accepted 30 August 2009; online 5 September 2009)

In the title compound, C11H12N2O2, a benzodiazepine derivative, the seven-membered ring adopts a distorted boat conformation. The crystal packing is controlled by inter­molecular N—H⋯O and C—H⋯O inter­actions.

Related literature

For the hypnotic effects of benzodiazepines, see: Gringauz (1999[Gringauz, A. (1999). Introduction to Medicinal Chemistry, pp. 578-580. New York: Wiley-VCH.]). For their use in the treatment of gastrointestinal and central nervous system disorders, see: Rahbaek et al. (1999[Rahbaek, L., Breinholt, J., Frisvad, J. C. & Christophersen, C. (1999). J. Org. Chem. 64, 1689-1692.]). For other therapeutic applications, see: Albright et al. (1998[Albright, J. D., Feich, M. F., Santos, E. G. D., Dusza, J. P., Sum, F.-W., Venkatesan, A. M., Coupet, J., Chan, P. S., Ru, X., Mazandarani, H. & Bailey, T. (1998). J. Med. Chem. 41, 2442-2444.]); Lee et al. (1999[Lee, J., Gauthier, D. & Rivero, R. A. (1999). J. Org. Chem. 64, 3060-3064.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]);) ; Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For details of the preparation, see: Venkatraj et al. (2008[Venkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 129-135.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O2

  • Mr = 204.23

  • Monoclinic, P 21 /c

  • a = 5.3284 (1) Å

  • b = 12.9387 (4) Å

  • c = 14.6227 (5) Å

  • β = 97.968 (2)°

  • V = 998.39 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.986

  • 14697 measured reflections

  • 3727 independent reflections

  • 2453 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.163

  • S = 1.05

  • 3727 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.89 (2) 2.12 (2) 2.9745 (16) 161.3 (18)
C13—H13⋯O1ii 0.93 2.38 3.2220 (18) 150
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzodiazepines are used for the purpose of hypnotic effects, owing to their less toxic and less severe withdrawal effects when compared with barbiturates (Gringauz, 1999). Benzodiazepines from aspergillus include asperlicin, which is used for treatment of gastrointestinal and central nervous system (CNS) disorders (Rahbaek et al.,1999). The other therapeutic applications (Lee et al., 1999) of benzodiazepines include vasopressin antagonists (Albright et al., 1998). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. The benzodiazepine ring adopts a distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.933 (1) Å, q3 = 0.170 (1) Å, ϕ2 = 144.8 (1)°, ϕ3 = 18.0 (4)° and Δ2(C4)=13.2 (1)°. The sum of the bond angles at N1(359.8°) and N5(359.8°) of the benzodiazepine ring is in accordance with sp2 hybridization.

The crystal packing is controlled by N—H···O and C—H···O types of intermolecular interactions in addition to van der Waals forces. Atom N1 at (x, y, z) donates a proton to O2 (1 - x, 1/2 + y, 1/2 - z), which forms a C7 (Bernstein et al., 1995) one dimensional chain running along b–axis. The intermolecular hydrogen bond C13—H13···O1 also connects the molecule into another C7 chain running along b–axis. Thus the combination of N—H···O and C—H···O intermolecular hydrogen bonds form a graph set motif of R22(7) dimer to stabilize the molecules and extend along b–axis (Fig. 2).

Related literature top

For the hypnotic effects of benzodiazepines, see: Gringauz (1999). For their use in the treatment of gastrointestinal and central

nervous system disorders, see: Rahbaek et al. (1999). For other therapeutic applications, see: Albright et al. (1998); Lee et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering and asymmetry parameters, see: Cremer & Pople (1975); ); Nardelli (1983). For details of the preparation, see: Venkatraj et al. (2008).

Experimental top

An ice-cold solution of acetic-formic anhydride was prepared from acetic anhydride (10 ml) and 85% formic acid (5 ml) was added slowly to a cold solution of tetrahydrobenzodiazepin-2-one (0.88 g) in anhydrous benzene (30 ml). The reaction mixture was stirred at room temperature for 4 hrs. The organic layer was separated, dried over anhydrous Na2SO4 and concentrated. The resulting mass was purified by crystallization from benzene-petroleum ether (333–353° K) mixture (1:1) (Venkatraj et al., 2008)

Refinement top

The H atom bonded to N was freely refined whereas the other H atoms were positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
4-Methyl-2-oxo-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine-5-carbaldehyde top
Crystal data top
C11H12N2O2F(000) = 432
Mr = 204.23Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2563 reflections
a = 5.3284 (1) Åθ = 2.1–32.9°
b = 12.9387 (4) ŵ = 0.10 mm1
c = 14.6227 (5) ÅT = 293 K
β = 97.968 (2)°Block, colourless
V = 998.39 (5) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3727 independent reflections
Radiation source: fine-focus sealed tube2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 32.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 88
Tmin = 0.977, Tmax = 0.986k = 1919
14697 measured reflectionsl = 2212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.076P)2 + 0.1596P]
where P = (Fo2 + 2Fc2)/3
3727 reflections(Δ/σ)max = 0.004
141 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C11H12N2O2V = 998.39 (5) Å3
Mr = 204.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3284 (1) ŵ = 0.10 mm1
b = 12.9387 (4) ÅT = 293 K
c = 14.6227 (5) Å0.30 × 0.20 × 0.15 mm
β = 97.968 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3727 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2453 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.986Rint = 0.028
14697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.40 e Å3
3727 reflectionsΔρmin = 0.17 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5676 (2)0.55730 (10)0.36634 (8)0.0596 (3)
O20.4734 (2)0.15716 (8)0.36319 (8)0.0498 (3)
N10.3101 (2)0.49320 (9)0.24515 (8)0.0411 (3)
H10.395 (4)0.5303 (15)0.2083 (14)0.060 (5)*
C20.3797 (3)0.50642 (10)0.33737 (10)0.0391 (3)
C30.2127 (3)0.45788 (10)0.39982 (9)0.0370 (3)
H3A0.03720.47250.37620.044*
H3B0.24900.48890.46060.044*
C40.2483 (2)0.34179 (10)0.40847 (8)0.0320 (3)
H40.42140.32860.43850.038*
N50.22002 (19)0.29427 (8)0.31600 (7)0.0319 (2)
C60.0534 (2)0.33715 (10)0.24086 (8)0.0313 (3)
C70.1530 (3)0.27966 (12)0.19987 (10)0.0421 (3)
H70.19120.21680.22560.051*
C80.3011 (3)0.31534 (14)0.12141 (11)0.0522 (4)
H80.43770.27640.09380.063*
C90.2459 (3)0.40821 (15)0.08435 (11)0.0552 (4)
H90.34350.43150.03060.066*
C100.0470 (3)0.46775 (12)0.12580 (10)0.0479 (4)
H100.01380.53150.10060.057*
C110.1037 (2)0.43294 (10)0.20486 (9)0.0343 (3)
C120.0669 (3)0.29350 (14)0.46723 (11)0.0503 (4)
H12A0.10430.30470.43870.075*
H12B0.09090.32450.52740.075*
H12C0.09900.22060.47280.075*
C130.3356 (3)0.20421 (10)0.30322 (10)0.0388 (3)
H130.30900.17540.24440.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0699 (7)0.0577 (7)0.0464 (7)0.0305 (6)0.0085 (5)0.0062 (5)
O20.0557 (6)0.0390 (5)0.0529 (7)0.0129 (4)0.0013 (5)0.0044 (5)
N10.0551 (7)0.0357 (6)0.0325 (6)0.0110 (5)0.0055 (5)0.0007 (5)
C20.0496 (7)0.0299 (6)0.0359 (7)0.0042 (5)0.0012 (5)0.0001 (5)
C30.0445 (7)0.0363 (6)0.0298 (6)0.0006 (5)0.0036 (5)0.0063 (5)
C40.0333 (5)0.0362 (6)0.0259 (5)0.0012 (4)0.0019 (4)0.0012 (5)
N50.0358 (5)0.0295 (5)0.0297 (5)0.0016 (4)0.0026 (4)0.0011 (4)
C60.0319 (5)0.0347 (6)0.0269 (6)0.0025 (4)0.0027 (4)0.0038 (5)
C70.0389 (7)0.0466 (8)0.0404 (7)0.0060 (5)0.0034 (5)0.0092 (6)
C80.0389 (7)0.0694 (10)0.0453 (8)0.0016 (7)0.0052 (6)0.0185 (8)
C90.0544 (9)0.0720 (11)0.0348 (7)0.0229 (8)0.0100 (6)0.0063 (7)
C100.0634 (9)0.0443 (8)0.0337 (7)0.0138 (7)0.0012 (6)0.0021 (6)
C110.0407 (6)0.0338 (6)0.0278 (6)0.0033 (5)0.0027 (5)0.0041 (5)
C120.0563 (9)0.0571 (9)0.0397 (8)0.0147 (7)0.0142 (6)0.0001 (7)
C130.0428 (7)0.0298 (6)0.0436 (7)0.0026 (5)0.0055 (5)0.0019 (5)
Geometric parameters (Å, º) top
O1—C21.2240 (16)C6—C111.3872 (18)
O2—C131.2248 (17)C6—C71.3925 (17)
N1—C21.3589 (18)C7—C81.379 (2)
N1—C111.4088 (17)C7—H70.9300
N1—H10.89 (2)C8—C91.367 (3)
C2—C31.498 (2)C8—H80.9300
C3—C41.5170 (18)C9—C101.381 (2)
C3—H3A0.9700C9—H90.9300
C3—H3B0.9700C10—C111.3881 (18)
C4—N51.4740 (16)C10—H100.9300
C4—C121.5145 (19)C12—H12A0.9600
C4—H40.9800C12—H12B0.9600
N5—C131.3430 (16)C12—H12C0.9600
N5—C61.4259 (15)C13—H130.9300
C2—N1—C11125.06 (12)C8—C7—C6120.40 (14)
C2—N1—H1116.2 (13)C8—C7—H7119.8
C11—N1—H1118.5 (13)C6—C7—H7119.8
O1—C2—N1120.58 (14)C9—C8—C7119.65 (14)
O1—C2—C3122.74 (13)C9—C8—H8120.2
N1—C2—C3116.67 (12)C7—C8—H8120.2
C2—C3—C4112.83 (11)C8—C9—C10120.70 (14)
C2—C3—H3A109.0C8—C9—H9119.6
C4—C3—H3A109.0C10—C9—H9119.6
C2—C3—H3B109.0C9—C10—C11120.32 (15)
C4—C3—H3B109.0C9—C10—H10119.8
H3A—C3—H3B107.8C11—C10—H10119.8
N5—C4—C12110.87 (11)C6—C11—C10119.08 (13)
N5—C4—C3109.94 (10)C6—C11—N1121.10 (11)
C12—C4—C3111.93 (12)C10—C11—N1119.78 (13)
N5—C4—H4108.0C4—C12—H12A109.5
C12—C4—H4108.0C4—C12—H12B109.5
C3—C4—H4108.0H12A—C12—H12B109.5
C13—N5—C6118.62 (11)C4—C12—H12C109.5
C13—N5—C4119.93 (11)H12A—C12—H12C109.5
C6—N5—C4121.21 (10)H12B—C12—H12C109.5
C11—C6—C7119.78 (12)O2—C13—N5124.93 (13)
C11—C6—N5120.50 (10)O2—C13—H13117.5
C7—C6—N5119.61 (12)N5—C13—H13117.5
C11—N1—C2—O1177.36 (14)N5—C6—C7—C8173.39 (13)
C11—N1—C2—C33.9 (2)C6—C7—C8—C90.7 (2)
O1—C2—C3—C4105.49 (15)C7—C8—C9—C101.4 (2)
N1—C2—C3—C475.77 (15)C8—C9—C10—C111.4 (2)
C2—C3—C4—N552.89 (14)C7—C6—C11—C102.81 (19)
C2—C3—C4—C12176.57 (11)N5—C6—C11—C10173.34 (12)
C12—C4—N5—C1381.79 (15)C7—C6—C11—N1179.59 (12)
C3—C4—N5—C13153.92 (12)N5—C6—C11—N14.25 (18)
C12—C4—N5—C692.50 (14)C9—C10—C11—C60.7 (2)
C3—C4—N5—C631.80 (15)C9—C10—C11—N1178.38 (13)
C13—N5—C6—C11118.66 (14)C2—N1—C11—C642.1 (2)
C4—N5—C6—C1166.98 (16)C2—N1—C11—C10140.35 (15)
C13—N5—C6—C757.50 (17)C6—N5—C13—O2176.50 (13)
C4—N5—C6—C7116.86 (13)C4—N5—C13—O22.1 (2)
C11—C6—C7—C82.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.89 (2)2.12 (2)2.9745 (16)161.3 (18)
C13—H13···O1ii0.932.383.2220 (18)150
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H12N2O2
Mr204.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.3284 (1), 12.9387 (4), 14.6227 (5)
β (°) 97.968 (2)
V3)998.39 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.977, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
14697, 3727, 2453
Rint0.028
(sin θ/λ)max1)0.765
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.163, 1.05
No. of reflections3727
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.89 (2)2.12 (2)2.9745 (16)161.3 (18)
C13—H13···O1ii0.932.383.2220 (18)149.8
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, India, for their encouragement to pursue the programme.

References

First citationAlbright, J. D., Feich, M. F., Santos, E. G. D., Dusza, J. P., Sum, F.-W., Venkatesan, A. M., Coupet, J., Chan, P. S., Ru, X., Mazandarani, H. & Bailey, T. (1998). J. Med. Chem. 41, 2442–2444.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGringauz, A. (1999). Introduction to Medicinal Chemistry, pp. 578–580. New York: Wiley-VCH.  Google Scholar
First citationLee, J., Gauthier, D. & Rivero, R. A. (1999). J. Org. Chem. 64, 3060–3064.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRahbaek, L., Breinholt, J., Frisvad, J. C. & Christophersen, C. (1999). J. Org. Chem. 64, 1689–1692.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 129–135.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds