organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2363-o2364

2,2,4-Tri­methyl-5-(4-tolyl­sulfon­yl)-2,3,4,5-tetra­hydro-1H-1,5-benzo­diazepine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 20 August 2009; accepted 30 August 2009; online 5 September 2009)

In the title compound, C19H24N2O2S, the benzodiazepine ring adopts a distorted boat conformation. The S atom shows a distorted tetra­hedral geometry, with the O—S—O [119.16 (14)°] and N—S—C [107.48 (10)°] angles deviating significantly from ideal values. The crystal packing is controlled by C—H⋯O, N—H⋯O and C—H⋯π inter­actions.

Related literature

For the use of benzodiazepines in the treatment of gastrointestinal and central nervous system disorders, see: Rahbaek et al. (1999[Rahbaek, L., Breinholt, J., Frisvad, J. C. & Christophersen, C. (1999). J. Org. Chem., 64, 1689-1692.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]);) ; Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For the Thorpe-Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For details of the preparation, see: Ponnuswamy et al. (2006[Ponnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathy, V. (2006). Indian J. Chem. Sect. B, 45, 2059-2070.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N2O2S

  • Mr = 344.46

  • Orthorhombic, P 21 21 21

  • a = 7.3658 (3) Å

  • b = 14.8013 (8) Å

  • c = 17.4556 (10) Å

  • V = 1903.07 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.964

  • 13544 measured reflections

  • 5154 independent reflections

  • 3278 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.145

  • S = 1.04

  • 5154 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2171 Friedel pairs

  • Flack parameter: −0.12 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O2 0.93 2.51 2.885 (4) 105
N1—H1⋯O2i 0.75 (3) 2.52 (3) 3.268 (3) 176 (3)
C14—H14B⋯O1ii 0.96 2.58 3.436 (4) 149
C13—H13ACg2 0.96 2.90 3.7592 (31) 150
C19—H19⋯Cg2i 0.93 2.90 3.5192 (34) 126
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z. Cg2 is the centroid of the = C15–C20 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzodiazepines are known for their natural occurrence in filamentous fungi and actinomycetes of the genera pencillium, aspergillus and streptomyces. Benzodiazepines from aspergillus include asperlicin, which is used for treatment of gastrointestinal and central nervous system (CNS) disorders (Rahbaek et al., 1999). In view of these importance and to ascertain the molecular conformation, a crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. The benzodiazepine ring adopts a distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.976 (3) Å, q3 = 0.068 (3) Å, ϕ2 = 152.5 (2)°, ϕ3 = 30.0 (1)° and Δ2(C4)=7.8 (1)°. Atom S takes up a distorted tetrahedral geometry, with the O—S—O and N—S—C angles deviating significantly from ideal values, and this may be attributed to the Thorpe-Ingold effect (Bassindale, 1984). The sum of the bond angles at N1 (342.9°) of the benzodiazepine ring is in accordance with sp3 hybridization, whereas the one at N5(359.7°) is in sp2 hybridization, respectively.

The crystal packing is controlled by C—H···O, N—H···O and C—H···π types of intra and intermolecular interactions. Atom N1 at (x, y, z) donates a proton to O1 (-x, y + 1/2, -z + 1/2 + 1), which forms a one-dimesional C7 chain (Bernstein et al., 1995) running along b–axis. The intermolecular hydrogen bond C14—H14B···O1 connects the molecule into a C6 one dimensional chain running along a–axis as shown in Fig 2. The methyl group H atom in the benzodiazepine ring interacts with the centroid atom of the toluenesulfonyl ring through an intramolecular C—H···π interaction involving atom C13, the separation between H13A and the centroid (Cg2) of the ring (C15/C16/C17/C18/C19/C20) being 2.899 Å.

Related literature top

For the use of benzodiazepines in the treatment of gastrointestinal and central nervous system disorders, see: Rahbaek et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering and asymmetry parameters, see: Cremer & Pople (1975); ); Nardelli (1983). For the Thorpe-Ingold effect, see: Bassindale (1984). For details of the preparation, see: Ponnuswamy et al. (2006). Cg2 is the centroid of the = C15–C20 ring.

Experimental top

To a solution of 2,2,4-Trimethyl-1H-tetrahydro-1,5-benzodiazepine (0.59 g) in anhydrous benzene (16 ml), triethylamine (0.7 ml) and 4-toluenesulfonyl chloride (1 gm) were added. The reaction mixture was allowed to reflux for 16 hrs. The benzene solution was washed with water, dried over anhydrous Na2SO4 and concentrated. The resulting mass was purified by crystallization from benzene (Ponnuswamy et al., 2006).

Refinement top

The amino H atom was freely refined. The other H atoms were positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(Cmethyl) or 1.2 Ueq(C). PLATON (Spek, 2009) detected a solvent accessible void of approximately 31 Å3. This void could have initially contained solvent molecules but these molecules have since evaporated from the structure without degradation of the crystal.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the displacement ellipsoids at 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down c–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
2,2,4-Trimethyl-5-(4-tolylsulfonyl)-2,3,4,5-tetrahydro-1H- 1,5-benzodiazepine top
Crystal data top
C19H24N2O2SF(000) = 736
Mr = 344.46Dx = 1.202 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2546 reflections
a = 7.3658 (3) Åθ = 1.8–29.4°
b = 14.8013 (8) ŵ = 0.18 mm1
c = 17.4556 (10) ÅT = 293 K
V = 1903.07 (17) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5154 independent reflections
Radiation source: fine-focus sealed tube3278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 29.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 510
Tmin = 0.957, Tmax = 0.964k = 2018
13544 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0742P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.009
5154 reflectionsΔρmax = 0.18 e Å3
224 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 2171 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (9)
Crystal data top
C19H24N2O2SV = 1903.07 (17) Å3
Mr = 344.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3658 (3) ŵ = 0.18 mm1
b = 14.8013 (8) ÅT = 293 K
c = 17.4556 (10) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5154 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3278 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.964Rint = 0.034
13544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145Δρmax = 0.18 e Å3
S = 1.04Δρmin = 0.19 e Å3
5154 reflectionsAbsolute structure: Flack (1983), 2171 Friedel pairs
224 parametersAbsolute structure parameter: 0.12 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08799 (9)0.63541 (4)0.80960 (4)0.0620 (2)
O10.2717 (3)0.63113 (17)0.78264 (12)0.0849 (6)
O20.0096 (3)0.55749 (13)0.84498 (12)0.0870 (7)
N10.0887 (3)0.84795 (14)0.70370 (13)0.0566 (5)
H10.072 (4)0.897 (2)0.6945 (18)0.073 (9)*
C20.2833 (3)0.83013 (16)0.71790 (15)0.0520 (6)
C30.3323 (3)0.73221 (16)0.70025 (16)0.0577 (6)
H3A0.46230.72570.70740.069*
H3B0.30780.72180.64640.069*
C40.2402 (3)0.65759 (15)0.74511 (17)0.0589 (7)
H40.27190.66420.79930.071*
N50.0387 (3)0.66325 (13)0.73728 (11)0.0524 (5)
C60.0396 (3)0.70241 (16)0.66986 (13)0.0497 (6)
C70.1455 (3)0.6493 (2)0.62250 (16)0.0659 (7)
H70.15650.58770.63200.079*
C80.2354 (4)0.6879 (3)0.56082 (18)0.0855 (10)
H80.30700.65240.52890.103*
C90.2182 (4)0.7779 (3)0.54737 (17)0.0862 (11)
H90.28190.80410.50710.103*
C100.1077 (4)0.8310 (2)0.59246 (15)0.0676 (7)
H100.09540.89220.58140.081*
C110.0141 (3)0.79417 (17)0.65442 (13)0.0501 (6)
C120.3967 (5)0.8894 (2)0.6654 (2)0.0813 (9)
H12A0.37350.95180.67670.122*
H12B0.52310.87660.67320.122*
H12C0.36520.87730.61300.122*
C130.3238 (4)0.8554 (2)0.80092 (17)0.0704 (7)
H13A0.25260.81820.83450.106*
H13B0.45040.84600.81130.106*
H13C0.29390.91770.80920.106*
C140.3082 (5)0.5663 (2)0.7171 (3)0.0999 (13)
H14A0.28210.56000.66350.150*
H14B0.43690.56230.72510.150*
H14C0.24850.51900.74510.150*
C150.0750 (3)0.72366 (16)0.87704 (14)0.0516 (5)
C160.1482 (4)0.80712 (19)0.85876 (15)0.0640 (7)
H160.20350.81650.81150.077*
C170.1378 (4)0.8753 (2)0.91126 (17)0.0759 (8)
H170.18730.93130.89880.091*
C180.0569 (4)0.8647 (2)0.98198 (17)0.0722 (7)
C190.0125 (4)0.7808 (2)0.99895 (18)0.0796 (9)
H190.06660.77121.04640.095*
C200.0035 (4)0.7106 (2)0.94719 (17)0.0700 (8)
H200.05080.65430.96000.084*
C210.0455 (7)0.9425 (3)1.0377 (2)0.1170 (14)
H21A0.01470.92291.08360.176*
H21B0.02170.99111.01500.176*
H21C0.16570.96281.05010.176*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0663 (4)0.0509 (3)0.0687 (4)0.0183 (3)0.0157 (3)0.0095 (3)
O10.0646 (11)0.1087 (16)0.0812 (13)0.0422 (12)0.0166 (10)0.0088 (13)
O20.1298 (19)0.0453 (10)0.0858 (13)0.0116 (11)0.0213 (13)0.0147 (10)
N10.0579 (12)0.0403 (11)0.0715 (13)0.0081 (9)0.0017 (11)0.0036 (10)
C20.0474 (12)0.0439 (12)0.0648 (15)0.0013 (9)0.0032 (11)0.0035 (11)
C30.0432 (11)0.0530 (13)0.0770 (17)0.0057 (10)0.0066 (12)0.0146 (13)
C40.0530 (13)0.0434 (13)0.0803 (17)0.0027 (11)0.0239 (13)0.0049 (12)
N50.0497 (11)0.0486 (11)0.0591 (11)0.0025 (8)0.0130 (9)0.0015 (9)
C60.0443 (12)0.0558 (13)0.0491 (12)0.0020 (10)0.0070 (10)0.0089 (10)
C70.0542 (14)0.0773 (19)0.0663 (15)0.0042 (13)0.0106 (12)0.0189 (15)
C80.0705 (19)0.128 (3)0.0583 (18)0.001 (2)0.0171 (16)0.0234 (19)
C90.0677 (19)0.140 (4)0.0504 (16)0.031 (2)0.0072 (14)0.005 (2)
C100.0623 (16)0.087 (2)0.0541 (14)0.0195 (15)0.0074 (13)0.0098 (14)
C110.0442 (11)0.0583 (14)0.0478 (12)0.0100 (10)0.0031 (10)0.0029 (11)
C120.081 (2)0.0666 (17)0.097 (2)0.0052 (16)0.0252 (18)0.0046 (16)
C130.0620 (15)0.0673 (17)0.0819 (18)0.0051 (13)0.0077 (14)0.0183 (16)
C140.077 (2)0.0482 (15)0.174 (4)0.0146 (14)0.024 (2)0.018 (2)
C150.0412 (11)0.0547 (13)0.0590 (13)0.0080 (10)0.0036 (11)0.0126 (11)
C160.0731 (17)0.0651 (17)0.0538 (14)0.0065 (14)0.0021 (13)0.0170 (13)
C170.091 (2)0.0607 (17)0.0764 (19)0.0149 (15)0.0173 (16)0.0148 (15)
C180.0755 (18)0.0681 (18)0.0730 (17)0.0079 (16)0.0034 (15)0.0024 (16)
C190.079 (2)0.092 (2)0.0674 (17)0.0025 (17)0.0194 (16)0.0025 (17)
C200.0712 (17)0.0671 (18)0.0717 (17)0.0057 (14)0.0213 (15)0.0072 (14)
C210.144 (4)0.103 (3)0.104 (3)0.019 (3)0.017 (3)0.032 (2)
Geometric parameters (Å, º) top
S1—O21.430 (2)C10—C111.394 (3)
S1—O11.434 (2)C10—H100.9300
S1—N51.623 (2)C12—H12A0.9600
S1—C151.761 (3)C12—H12B0.9600
N1—C111.395 (3)C12—H12C0.9600
N1—C21.478 (3)C13—H13A0.9600
N1—H10.75 (3)C13—H13B0.9600
C2—C121.519 (4)C13—H13C0.9600
C2—C131.526 (4)C14—H14A0.9600
C2—C31.525 (3)C14—H14B0.9600
C3—C41.515 (4)C14—H14C0.9600
C3—H3A0.9700C15—C201.368 (4)
C3—H3B0.9700C15—C161.385 (4)
C4—N51.493 (3)C16—C171.366 (4)
C4—C141.522 (4)C16—H160.9300
C4—H40.9800C17—C181.380 (4)
N5—C61.433 (3)C17—H170.9300
C6—C71.382 (3)C18—C191.375 (4)
C6—C111.397 (3)C18—C211.510 (5)
C7—C81.387 (5)C19—C201.379 (4)
C7—H70.9300C19—H190.9300
C8—C91.359 (5)C20—H200.9300
C8—H80.9300C21—H21A0.9600
C9—C101.378 (5)C21—H21B0.9600
C9—H90.9300C21—H21C0.9600
O2—S1—O1119.16 (14)N1—C11—C10121.6 (2)
O2—S1—N5107.96 (13)N1—C11—C6120.6 (2)
O1—S1—N5107.36 (11)C10—C11—C6117.6 (2)
O2—S1—C15106.71 (12)C2—C12—H12A109.5
O1—S1—C15107.67 (14)C2—C12—H12B109.5
N5—S1—C15107.48 (10)H12A—C12—H12B109.5
C11—N1—C2121.86 (19)C2—C12—H12C109.5
C11—N1—H1109 (2)H12A—C12—H12C109.5
C2—N1—H1112 (3)H12B—C12—H12C109.5
N1—C2—C12109.2 (2)C2—C13—H13A109.5
N1—C2—C13107.8 (2)C2—C13—H13B109.5
C12—C2—C13108.9 (2)H13A—C13—H13B109.5
N1—C2—C3111.42 (19)C2—C13—H13C109.5
C12—C2—C3107.3 (2)H13A—C13—H13C109.5
C13—C2—C3112.2 (2)H13B—C13—H13C109.5
C4—C3—C2118.8 (2)C4—C14—H14A109.5
C4—C3—H3A107.6C4—C14—H14B109.5
C2—C3—H3A107.6H14A—C14—H14B109.5
C4—C3—H3B107.6C4—C14—H14C109.5
C2—C3—H3B107.6H14A—C14—H14C109.5
H3A—C3—H3B107.0H14B—C14—H14C109.5
N5—C4—C3110.93 (19)C20—C15—C16119.8 (3)
N5—C4—C14110.3 (2)C20—C15—S1121.1 (2)
C3—C4—C14109.5 (3)C16—C15—S1119.09 (19)
N5—C4—H4108.7C17—C16—C15118.9 (3)
C3—C4—H4108.7C17—C16—H16120.6
C14—C4—H4108.7C15—C16—H16120.6
C6—N5—C4119.9 (2)C16—C17—C18122.7 (3)
C6—N5—S1120.68 (16)C16—C17—H17118.7
C4—N5—S1119.08 (17)C18—C17—H17118.7
C7—C6—C11120.9 (2)C19—C18—C17117.2 (3)
C7—C6—N5119.2 (2)C19—C18—C21121.9 (3)
C11—C6—N5119.8 (2)C17—C18—C21120.9 (3)
C6—C7—C8120.0 (3)C18—C19—C20121.5 (3)
C6—C7—H7120.0C18—C19—H19119.3
C8—C7—H7120.0C20—C19—H19119.3
C9—C8—C7119.6 (3)C15—C20—C19120.0 (3)
C9—C8—H8120.2C15—C20—H20120.0
C7—C8—H8120.2C19—C20—H20120.0
C8—C9—C10121.0 (3)C18—C21—H21A109.5
C8—C9—H9119.5C18—C21—H21B109.5
C10—C9—H9119.5H21A—C21—H21B109.5
C9—C10—C11120.8 (3)C18—C21—H21C109.5
C9—C10—H10119.6H21A—C21—H21C109.5
C11—C10—H10119.6H21B—C21—H21C109.5
C11—N1—C2—C1295.9 (3)C8—C9—C10—C111.7 (4)
C11—N1—C2—C13145.9 (2)C2—N1—C11—C10123.8 (3)
C11—N1—C2—C322.4 (3)C2—N1—C11—C662.0 (3)
N1—C2—C3—C461.1 (3)C9—C10—C11—N1175.7 (2)
C12—C2—C3—C4179.4 (2)C9—C10—C11—C61.3 (4)
C13—C2—C3—C459.8 (3)C7—C6—C11—N1178.1 (2)
C2—C3—C4—N557.2 (3)N5—C6—C11—N10.7 (3)
C2—C3—C4—C14179.3 (2)C7—C6—C11—C103.7 (3)
C3—C4—N5—C627.7 (3)N5—C6—C11—C10173.7 (2)
C14—C4—N5—C693.9 (3)O2—S1—C15—C201.4 (3)
C3—C4—N5—S1145.32 (18)O1—S1—C15—C20130.5 (2)
C14—C4—N5—S193.1 (3)N5—S1—C15—C20114.2 (2)
O2—S1—N5—C6146.99 (18)O2—S1—C15—C16177.6 (2)
O1—S1—N5—C617.3 (2)O1—S1—C15—C1648.5 (2)
C15—S1—N5—C698.24 (18)N5—S1—C15—C1666.8 (2)
O2—S1—N5—C440.06 (19)C20—C15—C16—C171.0 (4)
O1—S1—N5—C4169.70 (18)S1—C15—C16—C17180.0 (2)
C15—S1—N5—C474.71 (19)C15—C16—C17—C180.1 (4)
C4—N5—C6—C7116.8 (2)C16—C17—C18—C191.0 (4)
S1—N5—C6—C770.3 (3)C16—C17—C18—C21178.9 (3)
C4—N5—C6—C1165.7 (3)C17—C18—C19—C200.8 (5)
S1—N5—C6—C11107.2 (2)C21—C18—C19—C20179.1 (3)
C11—C6—C7—C83.2 (4)C16—C15—C20—C191.2 (4)
N5—C6—C7—C8174.3 (2)S1—C15—C20—C19179.8 (2)
C6—C7—C8—C90.1 (4)C18—C19—C20—C150.3 (5)
C7—C8—C9—C102.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O20.932.512.885 (4)105
N1—H1···O2i0.75 (3)2.52 (3)3.268 (3)176 (3)
C14—H14B···O1ii0.962.583.436 (4)149
C13—H13A···Cg20.962.903.759 (3)150
C19—H19···Cg2i0.932.903.519 (3)126
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H24N2O2S
Mr344.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.3658 (3), 14.8013 (8), 17.4556 (10)
V3)1903.07 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.957, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
13544, 5154, 3278
Rint0.034
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.145, 1.04
No. of reflections5154
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.19
Absolute structureFlack (1983), 2171 Friedel pairs
Absolute structure parameter0.12 (9)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O20.932.512.885 (4)104.7
N1—H1···O2i0.75 (3)2.52 (3)3.268 (3)176 (3)
C14—H14B···O1ii0.962.583.436 (4)148.6
C13—H13A···Cg20.962.89873.7592 (31)149.77
C19—H19···Cg2i0.932.89653.5192 (34)125.53
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1, y, z.
 

Acknowledgements

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, India, for their encouragement to pursue the programme.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPonnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathy, V. (2006). Indian J. Chem. Sect. B, 45, 2059–2070.  Google Scholar
First citationRahbaek, L., Breinholt, J., Frisvad, J. C. & Christophersen, C. (1999). J. Org. Chem., 64, 1689–1692.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2363-o2364
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds