metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1174-m1175

(Benzyl­amine)chloridobis(ethane-1,2-di­amine)cobalt(III) dichloride hemihydrate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 24 August 2009; accepted 30 August 2009; online 5 September 2009)

In the title compound, [CoCl(C2H8N2)2(C7H9N)]Cl2·0.5H2O, there are two crystallographically independent cations and anions and one water mol­ecule in the asymmetric unit. Both CoIII ions are bonded to two chelating ethylenediamine ligands, one benzylamine molecule and one chloride ion. The crystal packing is through N—H⋯O, N—H⋯Cl and O—H⋯Cl inter­actions.

Related literature

For the importance of metal complexes in the fields of bio­logical catalysis and functions, see: Gray (2003[Gray, H. B. (2003). Proc. Natl Acad. Sci. USA, 100, 3563-3568.]); Wohrle & Pomogailo (2003[Wohrle, D. & Pomogailo, A. D. (2003). Metal Complexes and Metals in Macromolecules. Weinheim: Wiley-VCH.]). For the biomedical applications of cobalt complexes, see: Osinsky (2004[Osinsky, S. (2004). Exp Oncol. 26, 140-144.]); Roth et al. (2002[Roth, T., Eckert, C., Fiebig, H. H. & Jung, M. (2002). Anticancer Res. 22, 2281-2284.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For related structures, see: Lee et al. (2007[Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949-m1950.]); Ramesh et al. (2008[Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300-m301.]). cis-[CoIII(en)2(BzNH2)Cl]Cl2·0.5H2O was synthesized (Bailer & Clapp, 1945[Bailer, J. C. & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171-175.]) by substituting the chloride ligand with benzyl amine in trans-[Co(en)2Cl2]Cl (Bailer & Rollinson, 1946[Bailer, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222-223.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl(C2H8N2)2(C7H9N)]Cl2·0.5H2O

  • Mr = 401.65

  • Monoclinic, P 21 /c

  • a = 20.9361 (9) Å

  • b = 7.2447 (3) Å

  • c = 24.4340 (9) Å

  • β = 106.440 (2)°

  • V = 3554.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.718, Tmax = 0.765

  • 40140 measured reflections

  • 8911 independent reflections

  • 6475 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.06

  • 8911 reflections

  • 458 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl3 0.81 (3) 2.67 (3) 3.406 (2) 151 (3)
N1—H1B⋯Cl2 0.87 (3) 2.36 (3) 3.211 (2) 163 (2)
N8—H8A⋯Cl3 0.91 (3) 2.33 (3) 3.179 (2) 156 (3)
N4′—H4D⋯O1 0.81 (3) 2.25 (3) 2.915 (3) 139 (2)
N8′—H8C⋯O1 0.87 (3) 2.15 (3) 2.964 (4) 155 (3)
N1′—H1C⋯Cl3′ 0.82 (3) 2.43 (4) 3.246 (2) 174 (3)
N4—H4A⋯Cl2i 0.87 (3) 2.65 (3) 3.423 (2) 149 (2)
N5′—H5D⋯Cl2′ 0.85 (3) 2.39 (3) 3.233 (2) 168 (3)
N8′—H8D⋯Cl3′ 0.87 (3) 2.48 (3) 3.252 (2) 148 (3)
N4—H4B⋯Cl3ii 0.93 (3) 2.45 (3) 3.265 (2) 147 (2)
N8—H8B⋯Cl3ii 0.79 (3) 2.49 (3) 3.280 (2) 176 (3)
N9—H9A⋯Cl2iii 0.84 (4) 2.57 (4) 3.391 (2) 166 (3)
N5′—H5C⋯Cl1i 0.91 (3) 2.63 (3) 3.380 (2) 141 (2)
N1′—H1D⋯Cl2′iv 0.89 (3) 2.49 (3) 3.288 (2) 149 (2)
N9′—H9D⋯Cl2′iv 0.85 (3) 2.81 (3) 3.615 (2) 158 (2)
N5—H5A⋯Cl2i 0.88 (3) 2.38 (3) 3.220 (2) 159 (2)
O1—H2W⋯Cl3′i 0.842 (17) 2.27 (2) 3.092 (3) 165 (4)
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+2, -z+1; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Metal complexes find importance in the fields of biological catalysis and functions, such as in metabolism (Gray, 2003; Wohrle & Pomogailo, 2003). Cobalt complexes were also found to show biomedical applications and one such example is cancer therapy (Osinsky, 2004; Roth et al., 2002). Against this background and to ascertain the molecular conformation, the structure determination of the title compound has been carried out.

There are two crystallographically independent molecules in the asymmetric unit. The CoIII ion and the four N atoms almost lie in the same plane, whereas the other N and Cl atoms are approximately perpendicular to this plane. The Co—N and Co—Cl bond lengths are comparable with the related complexes (Lee et al., 2007; Ramesh et al., 2008). In the molecule A, the two five membered rings adopt twist conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) [for the ring Co1/N1/C2/C3/N4 are: q2 = 0.416 (3) Å, ϕ= 90.4 (3)° and Δ2(Co1)= 0.10 (2)°; and for the ring Co1/N5/C6/C7/N8 are: q2 = 0.445 (3) Å, ϕ= 90.7 (3)° and Δ2(Co1)= 1.1 (2)°]. One of the five membered rings in the molecule B adopts twist conformation, whereas the other ring adopts envelope conformation [for the ring Co1'/N1'/C2'/C3'/N4' are: q2 =0.393 (2) Å, ϕ= 89.0 (3)° and Δ2(Co1')= 1.2 (2)°; and for the ring Co1'/N5'/C6'/C7'/N8' are: q2 = 0.443 (3) Å, ϕ= 281.0 (3)° and Δ2(Co1')= 11.1 (1)°].

The crystal packing is controlled by N—H···O, N—H···Cl, O—H···Cl and C—H···π types of intra and intermolecular interactions. The two intra molecular N—H···O hydrogen bonds form a S(6) ring motif. The combination of N4'-H4'D···O1, N8'-H8D···Cl3' and O1—H2W···Cl3' hydrogen bonds connects the molecule into one dimensional chain running along b–axis.

Related literature top

For the importance of metal complexes in the fields of biological catalysis and functions, see: Gray (2003); Wohrle & Pomogailo (2003). For the biomedical applications of cobalt complexes, see: Osinsky (2004); Roth et al. (2002). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). For related structures, see: Lee et al. (2007); Ramesh et al. (2008). cis-[CoIII(en)2(BzNH2)Cl]Cl2.0.5H2O was synthesized (Bailer & Clapp, 1945) by substituting the chloride ligand with benzyl amine in trans-[Co(en)2Cl2]Cl (Bailer & Rollinson, 1946).

Experimental top

Cis-[CoIII(en)2(BzNH2)Cl]Cl2.1/2 H2O was synthesized (Bailer and Clapp, 1945), by substituting chloride ligand with benzyl amine (Bz) in trans- [Co(en)2Cl2]Cl (Bailer and Rollinson, 1946). Two grams of the cobalt(III) complex was suspended in 1 ml of water in a mortar. To this a definite amount of AnalaR benzylamine was added in drops with constant grinding to obtain a paste. A rosy red color was observed and the grinding was continued for another 1 hr to obtain a homogeneous solid mass. The paste was then allowed to stand overnight in a desicator. The Bz substituted complex was recrystallized twice using acidified water, dried and preserved in a desicator. Single crystal was grown by adding the metal complex in triply distilled water acidified with HCl and kept standing at 0°C for 2–3 weeks.

Refinement top

Nitrogen and Oxygen H atoms were refined and other H atoms were positioned geometrically (C—H=0.93–0.97 Å) and allowed to ride on their parent atoms, with 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down the b–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
(Benzylamine)chloridobis(ethane-1,2-diamine)cobalt(III) dichloride hemihydrate top
Crystal data top
[CoCl(C2H8N2)2(C7H9N)]Cl2·0.5H2OF(000) = 1672
Mr = 401.65Dx = 1.501 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4562 reflections
a = 20.9361 (9) Åθ = 1.0–28.4°
b = 7.2447 (3) ŵ = 1.42 mm1
c = 24.4340 (9) ÅT = 293 K
β = 106.440 (2)°Block, pink
V = 3554.5 (3) Å30.25 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
8911 independent reflections
Radiation source: fine-focus sealed tube6475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and ϕ scansθmax = 28.4°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 2827
Tmin = 0.718, Tmax = 0.765k = 99
40140 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0439P)2 + 1.0235P]
where P = (Fo2 + 2Fc2)/3
8911 reflections(Δ/σ)max = 0.003
458 parametersΔρmax = 0.61 e Å3
2 restraintsΔρmin = 0.41 e Å3
Crystal data top
[CoCl(C2H8N2)2(C7H9N)]Cl2·0.5H2OV = 3554.5 (3) Å3
Mr = 401.65Z = 8
Monoclinic, P21/cMo Kα radiation
a = 20.9361 (9) ŵ = 1.42 mm1
b = 7.2447 (3) ÅT = 293 K
c = 24.4340 (9) Å0.25 × 0.20 × 0.20 mm
β = 106.440 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
8911 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
6475 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.765Rint = 0.044
40140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.61 e Å3
8911 reflectionsΔρmin = 0.41 e Å3
458 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.086901 (14)0.76169 (4)0.397792 (12)0.02243 (8)
Co1'0.378670 (14)0.24118 (4)0.376673 (12)0.02283 (8)
Cl10.18662 (3)0.89958 (10)0.40924 (3)0.04223 (16)
Cl1'0.28589 (3)0.41206 (9)0.36007 (3)0.04156 (16)
Cl20.03854 (4)1.27863 (9)0.47345 (3)0.04187 (16)
Cl2'0.44225 (3)0.22621 (9)0.47024 (3)0.03979 (16)
Cl30.07194 (4)1.07730 (10)0.24584 (3)0.04584 (17)
Cl3'0.40208 (4)0.54666 (10)0.23461 (3)0.04853 (18)
O10.46177 (15)0.0796 (4)0.28551 (13)0.0771 (8)
H1W0.4962 (16)0.050 (6)0.2760 (17)0.091 (15)*
H2W0.453 (2)0.189 (3)0.2743 (17)0.090 (14)*
N10.04245 (11)0.9940 (3)0.37372 (10)0.0301 (5)
H1A0.0583 (14)1.045 (4)0.3509 (12)0.040 (8)*
H1B0.0506 (12)1.073 (4)0.4018 (11)0.030 (7)*
N1'0.42817 (10)0.4624 (3)0.36963 (10)0.0285 (4)
H1C0.4186 (17)0.486 (5)0.3355 (15)0.066 (11)*
H1D0.4160 (13)0.558 (4)0.3874 (11)0.033 (7)*
C20.02989 (13)0.9642 (4)0.34926 (11)0.0372 (6)
H2A0.03960.92550.30970.045*
H2B0.05411.07740.35080.045*
C2'0.50016 (12)0.4304 (4)0.39128 (12)0.0399 (6)
H2C0.51480.44590.43240.048*
H2D0.52410.51750.37430.048*
C30.04994 (12)0.8175 (4)0.38393 (11)0.0385 (6)
H3A0.04850.86480.42140.046*
H3B0.09490.77590.36530.046*
C3'0.51319 (13)0.2377 (4)0.37573 (13)0.0402 (6)
H3C0.50890.22990.33520.048*
H3D0.55800.20070.39660.048*
N40.00203 (10)0.6626 (3)0.38910 (10)0.0293 (4)
H4A0.0026 (13)0.589 (4)0.4168 (12)0.039 (8)*
H4B0.0154 (14)0.589 (4)0.3567 (13)0.044 (8)*
N4'0.46398 (10)0.1153 (3)0.39043 (10)0.0300 (5)
H4C0.4779 (15)0.075 (4)0.4248 (13)0.049 (9)*
H4D0.4624 (13)0.019 (4)0.3731 (11)0.032 (8)*
N50.12897 (11)0.5183 (3)0.41295 (9)0.0296 (4)
H5A0.1141 (13)0.451 (4)0.4369 (11)0.037 (8)*
H5B0.1737 (15)0.547 (4)0.4276 (11)0.040 (8)*
N5'0.32999 (11)0.0116 (3)0.37956 (9)0.0287 (4)
H5C0.2923 (14)0.045 (4)0.3883 (11)0.036 (7)*
H5D0.3548 (15)0.055 (4)0.4060 (13)0.044 (9)*
C60.11746 (13)0.4154 (3)0.35841 (11)0.0329 (5)
H6A0.07320.36200.34740.039*
H6B0.14980.31690.36230.039*
C6'0.31418 (14)0.0861 (4)0.32408 (11)0.0398 (6)
H6C0.27530.16410.31950.048*
H6D0.35140.16310.32200.048*
C70.12481 (13)0.5530 (3)0.31469 (11)0.0333 (5)
H7A0.17070.59400.32290.040*
H7B0.11160.49870.27690.040*
C7'0.30080 (14)0.0588 (4)0.27837 (11)0.0431 (7)
H7C0.29750.00360.24150.052*
H7D0.25960.12320.27630.052*
N80.08093 (11)0.7084 (3)0.31812 (9)0.0278 (4)
H8A0.0920 (15)0.810 (5)0.3010 (13)0.055 (9)*
H8B0.0437 (14)0.683 (4)0.3021 (12)0.037 (8)*
N8'0.35805 (12)0.1872 (3)0.29494 (9)0.0331 (5)
H8C0.3901 (16)0.134 (4)0.2844 (13)0.051 (9)*
H8D0.3526 (15)0.293 (4)0.2772 (13)0.051 (9)*
N90.09587 (11)0.8161 (3)0.47994 (8)0.0305 (5)
H9A0.0589 (18)0.808 (5)0.4869 (14)0.068 (11)*
H9B0.1073 (15)0.934 (4)0.4830 (12)0.048 (9)*
N9'0.39414 (11)0.2930 (3)0.45935 (9)0.0301 (5)
H9C0.4328 (15)0.255 (4)0.4767 (12)0.038 (8)*
H9D0.3938 (12)0.410 (4)0.4623 (10)0.024 (7)*
C100.14694 (15)0.7113 (4)0.52328 (11)0.0466 (7)
H10A0.18690.70330.51070.056*
H10B0.13070.58660.52500.056*
C10'0.34564 (14)0.2178 (4)0.48815 (11)0.0390 (6)
H10C0.35850.09280.50080.047*
H10D0.30180.21270.46090.047*
C110.16542 (13)0.7919 (4)0.58258 (11)0.0370 (6)
C11'0.34216 (12)0.3326 (4)0.53849 (11)0.0350 (6)
C120.15612 (14)0.6896 (5)0.62752 (12)0.0482 (7)
H120.13460.57600.62040.058*
C12'0.35761 (15)0.2587 (4)0.59266 (12)0.0464 (7)
H12'0.37060.13580.59860.056*
C130.17863 (16)0.7549 (6)0.68334 (13)0.0595 (10)
H130.17220.68550.71340.071*
C13'0.35379 (18)0.3676 (6)0.63837 (13)0.0624 (10)
H13'0.36400.31670.67480.075*
C140.20967 (15)0.9192 (6)0.69345 (14)0.0643 (10)
H140.22520.96200.73070.077*
C14'0.33530 (17)0.5479 (6)0.63053 (15)0.0631 (10)
H14'0.33320.62010.66150.076*
C150.21876 (15)1.0241 (5)0.64982 (15)0.0619 (9)
H150.24001.13780.65750.074*
C15'0.31972 (14)0.6229 (5)0.57686 (15)0.0548 (8)
H15'0.30710.74620.57140.066*
C160.19618 (15)0.9606 (4)0.59400 (13)0.0487 (7)
H160.20191.03260.56420.058*
C16'0.32269 (13)0.5152 (4)0.53083 (13)0.0436 (7)
H16'0.31150.56620.49440.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01975 (15)0.02389 (16)0.02415 (16)0.00014 (12)0.00701 (12)0.00230 (12)
Co1'0.01926 (15)0.02633 (16)0.02270 (16)0.00031 (12)0.00564 (12)0.00163 (12)
Cl10.0292 (3)0.0464 (4)0.0532 (4)0.0123 (3)0.0149 (3)0.0018 (3)
Cl1'0.0254 (3)0.0454 (4)0.0503 (4)0.0103 (3)0.0049 (3)0.0065 (3)
Cl20.0563 (4)0.0368 (4)0.0404 (4)0.0037 (3)0.0264 (3)0.0006 (3)
Cl2'0.0416 (4)0.0367 (3)0.0360 (3)0.0009 (3)0.0028 (3)0.0037 (3)
Cl30.0526 (4)0.0451 (4)0.0382 (4)0.0053 (3)0.0102 (3)0.0142 (3)
Cl3'0.0563 (5)0.0478 (4)0.0434 (4)0.0077 (3)0.0172 (3)0.0094 (3)
O10.0703 (18)0.0750 (19)0.103 (2)0.0202 (15)0.0519 (17)0.0476 (16)
N10.0357 (12)0.0265 (11)0.0293 (11)0.0034 (9)0.0111 (10)0.0015 (9)
N1'0.0266 (11)0.0296 (11)0.0286 (11)0.0022 (8)0.0065 (9)0.0016 (9)
C20.0335 (14)0.0399 (15)0.0340 (14)0.0148 (11)0.0028 (11)0.0009 (11)
C2'0.0282 (13)0.0447 (16)0.0457 (16)0.0104 (12)0.0085 (12)0.0029 (12)
C30.0234 (13)0.0556 (17)0.0379 (14)0.0086 (12)0.0109 (11)0.0016 (12)
C3'0.0272 (13)0.0449 (16)0.0527 (17)0.0045 (11)0.0182 (12)0.0063 (13)
N40.0244 (11)0.0349 (12)0.0288 (11)0.0010 (9)0.0082 (9)0.0050 (9)
N4'0.0290 (11)0.0306 (12)0.0322 (12)0.0022 (9)0.0116 (10)0.0026 (10)
N50.0286 (12)0.0294 (11)0.0319 (11)0.0025 (9)0.0105 (10)0.0044 (9)
N5'0.0257 (11)0.0331 (11)0.0286 (11)0.0027 (9)0.0096 (9)0.0020 (9)
C60.0326 (13)0.0277 (12)0.0387 (14)0.0045 (10)0.0105 (11)0.0014 (10)
C6'0.0463 (16)0.0359 (14)0.0395 (15)0.0155 (12)0.0159 (12)0.0071 (11)
C70.0343 (14)0.0347 (14)0.0335 (13)0.0060 (11)0.0136 (11)0.0016 (10)
C7'0.0444 (16)0.0530 (18)0.0294 (14)0.0202 (14)0.0064 (12)0.0079 (12)
N80.0260 (12)0.0305 (11)0.0279 (11)0.0013 (9)0.0093 (9)0.0028 (8)
N8'0.0373 (13)0.0347 (12)0.0274 (11)0.0104 (10)0.0090 (10)0.0000 (9)
N90.0266 (12)0.0394 (13)0.0243 (10)0.0015 (9)0.0053 (9)0.0020 (9)
N9'0.0251 (11)0.0382 (13)0.0276 (11)0.0001 (9)0.0084 (9)0.0004 (9)
C100.0485 (18)0.0532 (18)0.0299 (14)0.0133 (14)0.0026 (13)0.0027 (12)
C10'0.0430 (16)0.0448 (16)0.0352 (14)0.0079 (12)0.0210 (12)0.0057 (12)
C110.0265 (13)0.0515 (17)0.0286 (13)0.0064 (11)0.0007 (10)0.0020 (11)
C11'0.0297 (13)0.0461 (15)0.0329 (13)0.0057 (11)0.0149 (11)0.0035 (11)
C120.0353 (16)0.0614 (19)0.0449 (17)0.0061 (14)0.0062 (13)0.0066 (14)
C12'0.0500 (18)0.0554 (18)0.0387 (15)0.0091 (14)0.0206 (14)0.0021 (13)
C130.0387 (17)0.106 (3)0.0333 (16)0.0176 (19)0.0089 (13)0.0153 (17)
C13'0.069 (2)0.090 (3)0.0370 (17)0.026 (2)0.0282 (16)0.0092 (17)
C140.0352 (17)0.117 (3)0.0351 (17)0.0052 (19)0.0018 (14)0.0164 (19)
C14'0.055 (2)0.090 (3)0.058 (2)0.0272 (19)0.0379 (18)0.0359 (19)
C150.0395 (18)0.080 (3)0.062 (2)0.0099 (16)0.0085 (16)0.0290 (19)
C15'0.0350 (16)0.059 (2)0.077 (2)0.0031 (14)0.0271 (16)0.0213 (17)
C160.0410 (17)0.061 (2)0.0433 (17)0.0004 (14)0.0109 (13)0.0036 (14)
C16'0.0290 (14)0.0562 (18)0.0456 (16)0.0028 (12)0.0105 (12)0.0015 (13)
Geometric parameters (Å, º) top
Co1—N11.933 (2)C6'—H6C0.9700
Co1—N41.950 (2)C6'—H6D0.9700
Co1—N81.954 (2)C7—N81.471 (3)
Co1—N51.959 (2)C7—H7A0.9700
Co1—N92.001 (2)C7—H7B0.9700
Co1—Cl12.2592 (7)C7'—N8'1.480 (3)
Co1'—N1'1.942 (2)C7'—H7C0.9700
Co1'—N4'1.948 (2)C7'—H7D0.9700
Co1'—N8'1.959 (2)N8—H8A0.91 (3)
Co1'—N5'1.962 (2)N8—H8B0.79 (3)
Co1'—N9'1.989 (2)N8'—H8C0.87 (3)
Co1'—Cl1'2.2415 (7)N8'—H8D0.87 (3)
O1—H1W0.84 (3)N9—C101.483 (3)
O1—H2W0.842 (17)N9—H9A0.84 (4)
N1—C21.478 (3)N9—H9B0.89 (3)
N1—H1A0.81 (3)N9'—C10'1.492 (3)
N1—H1B0.87 (3)N9'—H9C0.85 (3)
N1'—C2'1.468 (3)N9'—H9D0.85 (3)
N1'—H1C0.82 (3)C10—C111.507 (4)
N1'—H1D0.89 (3)C10—H10A0.9700
C2—C31.491 (4)C10—H10B0.9700
C2—H2A0.9700C10'—C11'1.503 (3)
C2—H2B0.9700C10'—H10C0.9700
C2'—C3'1.492 (4)C10'—H10D0.9700
C2'—H2C0.9700C11—C161.373 (4)
C2'—H2D0.9700C11—C121.384 (4)
C3—N41.487 (3)C11'—C12'1.379 (4)
C3—H3A0.9700C11'—C16'1.381 (4)
C3—H3B0.9700C12—C131.394 (4)
C3'—N4'1.479 (3)C12—H120.9300
C3'—H3C0.9700C12'—C13'1.388 (4)
C3'—H3D0.9700C12'—H12'0.9300
N4—H4A0.87 (3)C13—C141.345 (5)
N4—H4B0.93 (3)C13—H130.9300
N4'—H4C0.86 (3)C13'—C14'1.361 (5)
N4'—H4D0.81 (3)C13'—H13'0.9300
N5—C61.486 (3)C14—C151.366 (5)
N5—H5A0.88 (3)C14—H140.9300
N5—H5B0.93 (3)C14'—C15'1.371 (5)
N5'—C6'1.481 (3)C14'—H14'0.9300
N5'—H5C0.91 (3)C15—C161.389 (4)
N5'—H5D0.85 (3)C15—H150.9300
C6—C71.500 (3)C15'—C16'1.385 (4)
C6—H6A0.9700C15'—H15'0.9300
C6—H6B0.9700C16—H160.9300
C6'—C7'1.500 (4)C16'—H16'0.9300
N1—Co1—N485.69 (9)N5—C6—H6B110.4
N1—Co1—N888.81 (9)C7—C6—H6B110.4
N4—Co1—N891.65 (10)H6A—C6—H6B108.6
N1—Co1—N5173.44 (9)N5'—C6'—C7'107.0 (2)
N4—Co1—N593.07 (9)N5'—C6'—H6C110.3
N8—Co1—N584.78 (9)C7'—C6'—H6C110.3
N1—Co1—N991.95 (10)N5'—C6'—H6D110.3
N4—Co1—N989.85 (10)C7'—C6'—H6D110.3
N8—Co1—N9178.36 (9)H6C—C6'—H6D108.6
N5—Co1—N994.48 (9)N8—C7—C6106.04 (19)
N1—Co1—Cl190.06 (7)N8—C7—H7A110.5
N4—Co1—Cl1175.24 (7)C6—C7—H7A110.5
N8—Co1—Cl190.41 (7)N8—C7—H7B110.5
N5—Co1—Cl191.40 (7)C6—C7—H7B110.5
N9—Co1—Cl188.14 (7)H7A—C7—H7B108.7
N1'—Co1'—N4'85.16 (9)N8'—C7'—C6'105.7 (2)
N1'—Co1'—N8'92.50 (9)N8'—C7'—H7C110.6
N4'—Co1'—N8'90.53 (11)C6'—C7'—H7C110.6
N1'—Co1'—N5'176.43 (9)N8'—C7'—H7D110.6
N4'—Co1'—N5'93.27 (9)C6'—C7'—H7D110.6
N8'—Co1'—N5'84.30 (9)H7C—C7'—H7D108.7
N1'—Co1'—N9'89.81 (10)C7—N8—Co1110.07 (15)
N4'—Co1'—N9'92.02 (10)C7—N8—H8A110 (2)
N8'—Co1'—N9'176.70 (9)Co1—N8—H8A110 (2)
N5'—Co1'—N9'93.45 (9)C7—N8—H8B110 (2)
N1'—Co1'—Cl1'89.14 (7)Co1—N8—H8B108 (2)
N4'—Co1'—Cl1'174.30 (7)H8A—N8—H8B108 (3)
N8'—Co1'—Cl1'89.78 (8)C7'—N8'—Co1'109.39 (16)
N5'—Co1'—Cl1'92.42 (7)C7'—N8'—H8C106 (2)
N9'—Co1'—Cl1'87.90 (7)Co1'—N8'—H8C115 (2)
H1W—O1—H2W106 (4)C7'—N8'—H8D116 (2)
C2—N1—Co1110.22 (16)Co1'—N8'—H8D107 (2)
C2—N1—H1A111 (2)H8C—N8'—H8D104 (3)
Co1—N1—H1A111 (2)C10—N9—Co1117.35 (17)
C2—N1—H1B111.4 (17)C10—N9—H9A110 (2)
Co1—N1—H1B111.2 (17)Co1—N9—H9A111 (2)
H1A—N1—H1B102 (3)C10—N9—H9B108.2 (19)
C2'—N1'—Co1'110.90 (16)Co1—N9—H9B102.8 (19)
C2'—N1'—H1C109 (2)H9A—N9—H9B107 (3)
Co1'—N1'—H1C106 (2)C10'—N9'—Co1'118.23 (17)
C2'—N1'—H1D110.6 (17)C10'—N9'—H9C109.1 (19)
Co1'—N1'—H1D111.5 (17)Co1'—N9'—H9C107.7 (19)
H1C—N1'—H1D108 (3)C10'—N9'—H9D107.5 (16)
N1—C2—C3107.2 (2)Co1'—N9'—H9D105.7 (16)
N1—C2—H2A110.3H9C—N9'—H9D108 (2)
C3—C2—H2A110.3N9—C10—C11115.2 (2)
N1—C2—H2B110.3N9—C10—H10A108.5
C3—C2—H2B110.3C11—C10—H10A108.5
H2A—C2—H2B108.5N9—C10—H10B108.5
N1'—C2'—C3'107.4 (2)C11—C10—H10B108.5
N1'—C2'—H2C110.2H10A—C10—H10B107.5
C3'—C2'—H2C110.2N9'—C10'—C11'112.4 (2)
N1'—C2'—H2D110.2N9'—C10'—H10C109.1
C3'—C2'—H2D110.2C11'—C10'—H10C109.1
H2C—C2'—H2D108.5N9'—C10'—H10D109.1
N4—C3—C2107.13 (19)C11'—C10'—H10D109.1
N4—C3—H3A110.3H10C—C10'—H10D107.9
C2—C3—H3A110.3C16—C11—C12118.6 (3)
N4—C3—H3B110.3C16—C11—C10121.2 (3)
C2—C3—H3B110.3C12—C11—C10120.0 (3)
H3A—C3—H3B108.5C12'—C11'—C16'118.8 (3)
N4'—C3'—C2'108.0 (2)C12'—C11'—C10'121.2 (3)
N4'—C3'—H3C110.1C16'—C11'—C10'120.0 (2)
C2'—C3'—H3C110.1C11—C12—C13120.7 (3)
N4'—C3'—H3D110.1C11—C12—H12119.7
C2'—C3'—H3D110.1C13—C12—H12119.7
H3C—C3'—H3D108.4C11'—C12'—C13'120.0 (3)
C3—N4—Co1109.37 (17)C11'—C12'—H12'120.0
C3—N4—H4A112.0 (18)C13'—C12'—H12'120.0
Co1—N4—H4A111.5 (18)C14—C13—C12119.5 (3)
C3—N4—H4B109.0 (18)C14—C13—H13120.3
Co1—N4—H4B110.7 (17)C12—C13—H13120.3
H4A—N4—H4B104 (3)C14'—C13'—C12'120.8 (3)
C3'—N4'—Co1'110.18 (16)C14'—C13'—H13'119.6
C3'—N4'—H4C112 (2)C12'—C13'—H13'119.6
Co1'—N4'—H4C112 (2)C13—C14—C15121.1 (3)
C3'—N4'—H4D108.3 (19)C13—C14—H14119.5
Co1'—N4'—H4D114.4 (19)C15—C14—H14119.5
H4C—N4'—H4D100 (3)C13'—C14'—C15'119.7 (3)
C6—N5—Co1109.37 (15)C13'—C14'—H14'120.1
C6—N5—H5A108.6 (17)C15'—C14'—H14'120.1
Co1—N5—H5A113.4 (17)C14—C15—C16119.9 (3)
C6—N5—H5B110.4 (17)C14—C15—H15120.1
Co1—N5—H5B102.9 (17)C16—C15—H15120.1
H5A—N5—H5B112 (2)C14'—C15'—C16'120.0 (3)
C6'—N5'—Co1'110.85 (15)C14'—C15'—H15'120.0
C6'—N5'—H5C111.1 (17)C16'—C15'—H15'120.0
Co1'—N5'—H5C106.0 (17)C11—C16—C15120.3 (3)
C6'—N5'—H5D110.8 (19)C11—C16—H16119.9
Co1'—N5'—H5D107.1 (19)C15—C16—H16119.9
H5C—N5'—H5D111 (3)C11'—C16'—C15'120.6 (3)
N5—C6—C7106.4 (2)C11'—C16'—H16'119.7
N5—C6—H6A110.4C15'—C16'—H16'119.7
C7—C6—H6A110.4
N4—Co1—N1—C213.68 (17)N4—Co1—N8—C7108.29 (17)
N8—Co1—N1—C278.07 (18)N5—Co1—N8—C715.35 (17)
N5—Co1—N1—C265.6 (9)N9—Co1—N8—C748 (3)
N9—Co1—N1—C2103.38 (18)Cl1—Co1—N8—C776.01 (16)
Cl1—Co1—N1—C2168.47 (17)C6'—C7'—N8'—Co1'44.3 (3)
N4'—Co1'—N1'—C2'13.81 (18)N1'—Co1'—N8'—C7'161.0 (2)
N8'—Co1'—N1'—C2'104.13 (19)N4'—Co1'—N8'—C7'113.9 (2)
N5'—Co1'—N1'—C2'77.8 (16)N5'—Co1'—N8'—C7'20.6 (2)
N9'—Co1'—N1'—C2'78.23 (19)N9'—Co1'—N8'—C7'26.6 (19)
Cl1'—Co1'—N1'—C2'166.13 (17)Cl1'—Co1'—N8'—C7'71.82 (19)
Co1—N1—C2—C338.0 (2)N1—Co1—N9—C10160.1 (2)
Co1'—N1'—C2'—C3'36.6 (3)N4—Co1—N9—C10114.2 (2)
N1—C2—C3—N448.9 (3)N8—Co1—N9—C1042 (3)
N1'—C2'—C3'—N4'46.5 (3)N5—Co1—N9—C1021.1 (2)
C2—C3—N4—Co137.9 (2)Cl1—Co1—N9—C1070.1 (2)
N1—Co1—N4—C313.78 (17)N1'—Co1'—N9'—C10'154.6 (2)
N8—Co1—N4—C3102.47 (17)N4'—Co1'—N9'—C10'120.3 (2)
N5—Co1—N4—C3172.67 (17)N8'—Co1'—N9'—C10'20.1 (19)
N9—Co1—N4—C378.19 (17)N5'—Co1'—N9'—C10'26.9 (2)
Cl1—Co1—N4—C313.1 (9)Cl1'—Co1'—N9'—C10'65.4 (2)
C2'—C3'—N4'—Co1'35.6 (3)Co1—N9—C10—C11163.4 (2)
N1'—Co1'—N4'—C3'12.49 (19)Co1'—N9'—C10'—C11'152.63 (19)
N8'—Co1'—N4'—C3'79.97 (19)N9—C10—C11—C1664.9 (4)
N5'—Co1'—N4'—C3'164.29 (18)N9—C10—C11—C12120.1 (3)
N9'—Co1'—N4'—C3'102.13 (19)N9'—C10'—C11'—C12'119.6 (3)
Cl1'—Co1'—N4'—C3'13.1 (9)N9'—C10'—C11'—C16'60.9 (3)
N1—Co1—N5—C61.6 (9)C16—C11—C12—C131.2 (4)
N4—Co1—N5—C677.27 (17)C10—C11—C12—C13174.0 (3)
N8—Co1—N5—C614.11 (17)C16'—C11'—C12'—C13'0.3 (4)
N9—Co1—N5—C6167.36 (17)C10'—C11'—C12'—C13'179.8 (3)
Cl1—Co1—N5—C6104.39 (16)C11—C12—C13—C140.0 (5)
N1'—Co1'—N5'—C6'18.2 (16)C11'—C12'—C13'—C14'0.4 (5)
N4'—Co1'—N5'—C6'82.01 (19)C12—C13—C14—C150.8 (5)
N8'—Co1'—N5'—C6'8.20 (19)C12'—C13'—C14'—C15'0.5 (5)
N9'—Co1'—N5'—C6'174.23 (19)C13—C14—C15—C160.5 (5)
Cl1'—Co1'—N5'—C6'97.73 (18)C13'—C14'—C15'—C16'0.1 (5)
Co1—N5—C6—C739.8 (2)C12—C11—C16—C151.5 (4)
Co1'—N5'—C6'—C7'34.7 (3)C10—C11—C16—C15173.6 (3)
N5—C6—C7—N852.0 (3)C14—C15—C16—C110.7 (5)
N5'—C6'—C7'—N8'50.7 (3)C12'—C11'—C16'—C15'1.0 (4)
C6—C7—N8—Co140.9 (2)C10'—C11'—C16'—C15'179.5 (2)
N1—Co1—N8—C7166.07 (18)C14'—C15'—C16'—C11'0.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.81 (3)2.67 (3)3.406 (2)151 (3)
N1—H1B···Cl20.87 (3)2.36 (3)3.211 (2)163 (2)
N8—H8A···Cl30.91 (3)2.33 (3)3.179 (2)156 (3)
N4—H4D···O10.81 (3)2.25 (3)2.915 (3)139 (2)
N8—H8C···O10.87 (3)2.15 (3)2.964 (4)155 (3)
N1—H1C···Cl30.82 (3)2.43 (4)3.246 (2)174 (3)
N4—H4A···Cl2i0.87 (3)2.65 (3)3.423 (2)149 (2)
N5—H5D···Cl20.85 (3)2.39 (3)3.233 (2)168 (3)
N8—H8D···Cl30.87 (3)2.48 (3)3.252 (2)148 (3)
N4—H4B···Cl3ii0.93 (3)2.45 (3)3.265 (2)147 (2)
N8—H8B···Cl3ii0.79 (3)2.49 (3)3.280 (2)176 (3)
N9—H9A···Cl2iii0.84 (4)2.57 (4)3.391 (2)166 (3)
N5—H5C···Cl1i0.91 (3)2.63 (3)3.380 (2)141 (2)
N1—H1D···Cl2iv0.89 (3)2.49 (3)3.288 (2)149 (2)
N9—H9D···Cl2iv0.85 (3)2.81 (3)3.615 (2)158 (2)
N5—H5A···Cl2i0.88 (3)2.38 (3)3.220 (2)159 (2)
O1—H2W···Cl3i0.84 (2)2.27 (2)3.092 (3)165 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+2, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CoCl(C2H8N2)2(C7H9N)]Cl2·0.5H2O
Mr401.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)20.9361 (9), 7.2447 (3), 24.4340 (9)
β (°) 106.440 (2)
V3)3554.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.718, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
40140, 8911, 6475
Rint0.044
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.06
No. of reflections8911
No. of parameters458
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.41

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.81 (3)2.67 (3)3.406 (2)151 (3)
N1—H1B···Cl20.87 (3)2.36 (3)3.211 (2)163 (2)
N8—H8A···Cl30.91 (3)2.33 (3)3.179 (2)156 (3)
N4'—H4D···O10.81 (3)2.25 (3)2.915 (3)139 (2)
N8'—H8C···O10.87 (3)2.15 (3)2.964 (4)155 (3)
N1'—H1C···Cl3'0.82 (3)2.43 (4)3.246 (2)174 (3)
N4—H4A···Cl2i0.87 (3)2.65 (3)3.423 (2)149 (2)
N5'—H5D···Cl2'0.85 (3)2.39 (3)3.233 (2)168 (3)
N8'—H8D···Cl3'0.87 (3)2.48 (3)3.252 (2)148 (3)
N4—H4B···Cl3ii0.93 (3)2.45 (3)3.265 (2)147 (2)
N8—H8B···Cl3ii0.79 (3)2.49 (3)3.280 (2)176 (3)
N9—H9A···Cl2iii0.84 (4)2.57 (4)3.391 (2)166 (3)
N5'—H5C···Cl1i0.91 (3)2.63 (3)3.380 (2)141 (2)
N1'—H1D···Cl2'iv0.89 (3)2.49 (3)3.288 (2)149 (2)
N9'—H9D···Cl2'iv0.85 (3)2.81 (3)3.615 (2)158 (2)
N5—H5A···Cl2i0.88 (3)2.38 (3)3.220 (2)159 (2)
O1—H2W···Cl3'i0.842 (17)2.27 (2)3.092 (3)165 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+2, z+1; (iv) x, y+1, z.
 

Acknowledgements

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, India, for their encouragement to pursue the programme.

References

First citationBailer, J. C. & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171–175.  Google Scholar
First citationBailer, J. C. & Rollinson, C. L. (1946). Inorg. Synth. 22, 222–223.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGray, H. B. (2003). Proc. Natl Acad. Sci. USA, 100, 3563–3568.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOsinsky, S. (2004). Exp Oncol. 26, 140–144.  Web of Science PubMed CAS Google Scholar
First citationRamesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoth, T., Eckert, C., Fiebig, H. H. & Jung, M. (2002). Anticancer Res. 22, 2281–2284.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWohrle, D. & Pomogailo, A. D. (2003). Metal Complexes and Metals in Macromolecules. Weinheim: Wiley-VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1174-m1175
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds