organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1-Methyl-1H-pyrrol-2-yl)carbonyl­meth­yl]isoindoline-1,3-dione

aInstitue of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: Christian.Peifer@uni-tuebingen.de

(Received 27 August 2009; accepted 28 August 2009; online 9 September 2009)

The asymmetric unit of the title compound, C15H12N2O3, contains two almost identical mol­ecules forming an nearly C2-symmetric dimeric pattern. The dihedral angles between the pyrrole ring and the phthalimide unit are 82.95 (8) and 86.57 (8)° for the two mol­ecules. Within such a dimer, the phthalimide units of the two mol­ecules form a dihedral angle of 1.5 (5)°.

Related literature

For regioselective synthesis of acyl­pyrroles see: Andersen & Exner (1977[Andersen, A. G. Jr & Exner, M. M. (1977). J. Org. Chem. 42, 3952-3955.]); Massa et al. (1990[Massa, S., Di Santo, R. & Artico, M. (1990). J. Heterocycl. Chem. 27, 1131-113.]); Katritzky et al. (2003[Katritzky, A. R., Suzuki, K., Singh, S. K. & He, H.-Y. (2003). J. Org. Chem. 68, 5720-5723.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O3

  • Mr = 268.27

  • Monoclinic, P 21 /c

  • a = 10.8897 (7) Å

  • b = 14.8466 (4) Å

  • c = 15.8200 (9) Å

  • β = 101.619 (3)°

  • V = 2505.3 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 193 K

  • 0.51 × 0.29 × 0.26 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5001 measured reflections

  • 4744 independent reflections

  • 4400 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.05

  • 4744 reflections

  • 364 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Acylpyrroles are interesting building-blocks in the synthesis of therapeutic agents, e.g. in the preparation of small molecule drugs used for chemotherapy (Massa et al., 1990). In line with this notion, regiospecific C-acylation of pyrroles in 2- or 3-position is a key for straightforward synthetic strategies of such organic molecules. As shown by Katritzky et al. (2003) regioselective 2-acylation of pyrroles can be achieved by using N-acylbenzotriazoles as auxiliar in the presence of TiCl4. Accordingly to this concept, the title compound was synthesized and we confirmed by crystal structure analysis the pyrrole system to be substituted in 2-position.

The symmetric crystal structure contains two highly similar molecules forming a dimeric pattern. The dihedral angle between the pyrrole and phtalimid moiety of molecule A is 82.95 (8)°, wheras molecule B is forming an angle of 86.57 (8)° between these aromatic systems. However, the N-phtalyl-moieties of molecule A and B, respectively, are forming a dihedral angle of 1.5 (5)°. The two crystallographic independend molecules form dimers by πi-πi-interactions. The distance between the centroid of the ring C3 - C8 (molecule A) and the least square plane C23 - C28 (molecule B) is 3.45 Å. A perspective view of the title compound is shown in Figure 1.

Related literature top

For regioselective synthesis of acylpyrroles see: Andersen et al. (1977); Massa et al. (1990); Katritzky et al. (2003).

Experimental top

The title compound was synthesized following the general procedure for the preparation of 2-acylpyrroles established by Katritzky et al. (2003). Briefly, a solution of TiCl4 in CH2Cl2 (1.0 M, 17 ml) was added to a mixture of 1-methyl-1H-pyrrole (10,36 mmol) and 2-(2-(1H-benzo[d][1,2,3]triazol-1-yl)-2-oxoethyl) isoindoline -1,3-dione (8,3 mmol) in CH2Cl2 (20 ml) and stirred for 4 h at room temperature. The reaction was quenched by adding MeOH (5 ml). The solvents were evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using a hexane/ethylacetate gradient (80:20 - 70:30) as mobile phase to purify the product (yield: 67.5%). Crystals of the title compound were obtained by slow evaporation of a methanol solution at room temperature.

Refinement top

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atoms). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms omitted.
2-[(1-Methyl-1H-pyrrol-2-yl)carbonylmethyl]isoindoline-1,3-dione top
Crystal data top
C15H12N2O3F(000) = 1120
Mr = 268.27Dx = 1.422 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.8897 (7) Åθ = 65–70°
b = 14.8466 (4) ŵ = 0.84 mm1
c = 15.8200 (9) ÅT = 193 K
β = 101.619 (3)°Block, colourless
V = 2505.3 (2) Å30.51 × 0.29 × 0.26 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.034
Radiation source: rotating anodeθmax = 69.9°, θmin = 4.1°
Graphite monochromatorh = 013
ω/2θ scansk = 018
5001 measured reflectionsl = 1918
4744 independent reflections3 standard reflections every 60 min
4400 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.073P)2 + 1.0728P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4744 reflectionsΔρmax = 0.34 e Å3
364 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (3)
Crystal data top
C15H12N2O3V = 2505.3 (2) Å3
Mr = 268.27Z = 8
Monoclinic, P21/cCu Kα radiation
a = 10.8897 (7) ŵ = 0.84 mm1
b = 14.8466 (4) ÅT = 193 K
c = 15.8200 (9) Å0.51 × 0.29 × 0.26 mm
β = 101.619 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.034
5001 measured reflections3 standard reflections every 60 min
4744 independent reflections intensity decay: 2%
4400 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
4744 reflectionsΔρmin = 0.27 e Å3
364 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39270 (13)0.34485 (10)0.01591 (9)0.0329 (3)
C20.46171 (15)0.26582 (11)0.03592 (10)0.0297 (3)
C30.57346 (14)0.29082 (10)0.10221 (10)0.0273 (3)
C40.67252 (15)0.23893 (11)0.14345 (10)0.0330 (4)
H40.67630.17620.13230.040*
C50.76675 (16)0.28191 (12)0.20197 (11)0.0360 (4)
H50.83680.24810.23090.043*
C60.76016 (16)0.37357 (12)0.21878 (11)0.0352 (4)
H60.82590.40150.25880.042*
C70.65856 (16)0.42500 (11)0.17785 (11)0.0331 (4)
H70.65310.48740.19010.040*
C80.56604 (14)0.38244 (10)0.11897 (10)0.0280 (3)
C90.44834 (15)0.41772 (11)0.06494 (11)0.0320 (4)
C100.28288 (16)0.35196 (13)0.05247 (11)0.0383 (4)
H10A0.27920.29870.09060.046*
H10B0.29110.40610.08750.046*
C110.16021 (15)0.35816 (11)0.01983 (10)0.0300 (3)
O120.15704 (12)0.33737 (9)0.05414 (8)0.0427 (3)
C130.05263 (15)0.38909 (10)0.08287 (10)0.0294 (3)
N140.06493 (13)0.40234 (9)0.06445 (9)0.0320 (3)
C150.14245 (17)0.43340 (12)0.13630 (12)0.0397 (4)
H150.22840.44810.14060.048*
C160.07732 (18)0.44034 (13)0.20208 (12)0.0427 (4)
H160.10980.46030.25930.051*
C170.04520 (17)0.41260 (11)0.16894 (11)0.0355 (4)
H170.11170.41020.19960.043*
O180.43333 (11)0.19337 (8)0.00271 (8)0.0375 (3)
O190.40481 (12)0.49318 (8)0.06132 (9)0.0428 (3)
C200.10471 (17)0.38641 (12)0.01728 (12)0.0388 (4)
H20A0.19070.40830.01290.058*
H20B0.04860.41860.06370.058*
H20C0.10150.32170.02990.058*
N210.58245 (12)0.42578 (9)0.39592 (9)0.0302 (3)
C220.47025 (15)0.43972 (10)0.33749 (10)0.0287 (3)
C230.43484 (14)0.35043 (10)0.29679 (9)0.0262 (3)
C240.33207 (15)0.32607 (11)0.23521 (10)0.0304 (3)
H240.27010.36870.21060.036*
C250.32325 (16)0.23539 (11)0.21062 (10)0.0334 (4)
H250.25390.21600.16800.040*
C260.41323 (16)0.17345 (11)0.24692 (11)0.0345 (4)
H260.40440.11240.22880.041*
C270.51668 (16)0.19874 (11)0.30963 (11)0.0329 (4)
H270.57850.15630.33490.040*
C280.52509 (14)0.28838 (10)0.33324 (10)0.0278 (3)
C290.62031 (14)0.33601 (11)0.39818 (10)0.0291 (3)
C300.64309 (16)0.49219 (11)0.45774 (11)0.0335 (4)
H30A0.66520.46380.51550.040*
H30B0.58330.54160.46120.040*
C310.76166 (14)0.53162 (10)0.43435 (10)0.0265 (3)
O320.77978 (11)0.52463 (8)0.36106 (7)0.0344 (3)
C330.84253 (14)0.57881 (10)0.50392 (10)0.0270 (3)
N340.95340 (12)0.62135 (9)0.49670 (9)0.0288 (3)
C351.00335 (15)0.66000 (11)0.57314 (11)0.0344 (4)
H351.07930.69340.58520.041*
C360.92692 (16)0.64334 (12)0.63070 (11)0.0363 (4)
H360.94020.66320.68890.044*
C370.82680 (15)0.59226 (11)0.58807 (11)0.0327 (4)
H370.75940.57030.61210.039*
O380.41466 (11)0.51066 (8)0.32588 (8)0.0388 (3)
O390.71219 (11)0.30649 (9)0.44629 (8)0.0393 (3)
C401.00841 (16)0.62710 (12)0.42003 (11)0.0364 (4)
H40A0.96060.67010.37920.055*
H40B1.00600.56770.39280.055*
H40C1.09560.64740.43660.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0290 (7)0.0358 (7)0.0341 (7)0.0020 (5)0.0066 (5)0.0004 (6)
C20.0308 (8)0.0310 (8)0.0298 (8)0.0018 (6)0.0123 (6)0.0003 (6)
C30.0284 (7)0.0282 (7)0.0272 (7)0.0024 (6)0.0103 (6)0.0014 (6)
C40.0365 (9)0.0283 (8)0.0355 (8)0.0024 (6)0.0102 (7)0.0005 (6)
C50.0332 (8)0.0402 (9)0.0339 (8)0.0037 (7)0.0053 (7)0.0016 (7)
C60.0329 (8)0.0409 (9)0.0316 (8)0.0050 (7)0.0060 (6)0.0051 (7)
C70.0374 (9)0.0281 (8)0.0364 (8)0.0038 (6)0.0132 (7)0.0052 (6)
C80.0293 (8)0.0273 (8)0.0303 (8)0.0007 (6)0.0127 (6)0.0005 (6)
C90.0336 (8)0.0307 (8)0.0352 (8)0.0018 (6)0.0151 (7)0.0014 (6)
C100.0325 (9)0.0519 (10)0.0304 (8)0.0036 (7)0.0056 (7)0.0028 (7)
C110.0326 (8)0.0277 (8)0.0289 (8)0.0009 (6)0.0047 (6)0.0002 (6)
O120.0387 (7)0.0584 (8)0.0311 (6)0.0024 (6)0.0069 (5)0.0083 (6)
C130.0305 (8)0.0254 (7)0.0324 (8)0.0009 (6)0.0064 (6)0.0012 (6)
N140.0308 (7)0.0279 (7)0.0374 (7)0.0002 (5)0.0072 (6)0.0012 (5)
C150.0332 (9)0.0356 (9)0.0478 (10)0.0039 (7)0.0020 (7)0.0004 (7)
C160.0467 (10)0.0408 (10)0.0370 (9)0.0044 (8)0.0000 (8)0.0048 (8)
C170.0393 (9)0.0353 (9)0.0316 (8)0.0008 (7)0.0068 (7)0.0004 (7)
O180.0411 (7)0.0339 (6)0.0379 (6)0.0068 (5)0.0089 (5)0.0080 (5)
O190.0436 (7)0.0335 (6)0.0538 (8)0.0113 (5)0.0158 (6)0.0024 (5)
C200.0393 (9)0.0369 (9)0.0440 (10)0.0007 (7)0.0171 (8)0.0028 (7)
N210.0304 (7)0.0274 (7)0.0325 (7)0.0070 (5)0.0055 (5)0.0021 (5)
C220.0315 (8)0.0258 (8)0.0304 (8)0.0037 (6)0.0100 (6)0.0021 (6)
C230.0287 (7)0.0257 (7)0.0255 (7)0.0035 (6)0.0087 (6)0.0016 (6)
C240.0311 (8)0.0320 (8)0.0279 (8)0.0017 (6)0.0061 (6)0.0014 (6)
C250.0358 (8)0.0353 (9)0.0292 (8)0.0102 (7)0.0072 (6)0.0037 (6)
C260.0440 (9)0.0271 (8)0.0351 (8)0.0071 (7)0.0145 (7)0.0049 (6)
C270.0365 (9)0.0274 (8)0.0369 (8)0.0020 (6)0.0124 (7)0.0005 (6)
C280.0273 (7)0.0285 (8)0.0292 (8)0.0026 (6)0.0098 (6)0.0011 (6)
C290.0266 (8)0.0313 (8)0.0303 (8)0.0031 (6)0.0081 (6)0.0019 (6)
C300.0348 (8)0.0331 (8)0.0333 (8)0.0100 (7)0.0083 (7)0.0070 (7)
C310.0282 (7)0.0200 (7)0.0304 (8)0.0014 (6)0.0040 (6)0.0004 (6)
O320.0391 (6)0.0341 (6)0.0305 (6)0.0056 (5)0.0085 (5)0.0030 (5)
C330.0252 (7)0.0232 (7)0.0323 (8)0.0004 (6)0.0048 (6)0.0003 (6)
N340.0264 (6)0.0261 (6)0.0338 (7)0.0007 (5)0.0056 (5)0.0001 (5)
C350.0287 (8)0.0318 (8)0.0399 (9)0.0027 (6)0.0005 (7)0.0038 (7)
C360.0336 (8)0.0414 (9)0.0323 (8)0.0001 (7)0.0028 (7)0.0079 (7)
C370.0289 (8)0.0370 (9)0.0322 (8)0.0010 (6)0.0062 (6)0.0027 (7)
O380.0431 (7)0.0255 (6)0.0465 (7)0.0015 (5)0.0062 (5)0.0008 (5)
O390.0294 (6)0.0444 (7)0.0415 (7)0.0009 (5)0.0014 (5)0.0020 (5)
C400.0311 (8)0.0417 (9)0.0381 (9)0.0029 (7)0.0108 (7)0.0031 (7)
Geometric parameters (Å, º) top
N1—C21.395 (2)N21—C221.391 (2)
N1—C91.396 (2)N21—C291.393 (2)
N1—C101.446 (2)N21—C301.451 (2)
C2—O181.210 (2)C22—O381.210 (2)
C2—C31.485 (2)C22—C231.490 (2)
C3—C41.378 (2)C23—C241.376 (2)
C3—C81.391 (2)C23—C281.385 (2)
C4—C51.391 (2)C24—C251.399 (2)
C4—H40.9500C24—H240.9500
C5—C61.391 (2)C25—C261.382 (2)
C5—H50.9500C25—H250.9500
C6—C71.392 (2)C26—C271.394 (2)
C6—H60.9500C26—H260.9500
C7—C81.380 (2)C27—C281.380 (2)
C7—H70.9500C27—H270.9500
C8—C91.485 (2)C28—C291.484 (2)
C9—O191.213 (2)C29—O391.2106 (19)
C10—C111.529 (2)C30—C311.529 (2)
C10—H10A0.9900C30—H30A0.9900
C10—H10B0.9900C30—H30B0.9900
C11—O121.217 (2)C31—O321.2191 (19)
C11—C131.452 (2)C31—C331.445 (2)
C13—N141.383 (2)C33—N341.388 (2)
C13—C171.392 (2)C33—C371.390 (2)
N14—C151.353 (2)N34—C351.350 (2)
N14—C201.463 (2)N34—C401.460 (2)
C15—C161.376 (3)C35—C361.374 (2)
C15—H150.9500C35—H350.9500
C16—C171.394 (3)C36—C371.387 (2)
C16—H160.9500C36—H360.9500
C17—H170.9500C37—H370.9500
C20—H20A0.9800C40—H40A0.9800
C20—H20B0.9800C40—H40B0.9800
C20—H20C0.9800C40—H40C0.9800
C2—N1—C9111.84 (13)C22—N21—C29112.03 (13)
C2—N1—C10123.91 (14)C22—N21—C30124.51 (14)
C9—N1—C10124.06 (15)C29—N21—C30122.72 (14)
O18—C2—N1124.79 (15)O38—C22—N21125.16 (15)
O18—C2—C3129.09 (15)O38—C22—C23129.10 (15)
N1—C2—C3106.11 (13)N21—C22—C23105.72 (13)
C4—C3—C8121.75 (15)C24—C23—C28121.84 (14)
C4—C3—C2130.29 (15)C24—C23—C22129.99 (14)
C8—C3—C2107.96 (13)C28—C23—C22108.16 (13)
C3—C4—C5117.45 (15)C23—C24—C25116.77 (15)
C3—C4—H4121.3C23—C24—H24121.6
C5—C4—H4121.3C25—C24—H24121.6
C4—C5—C6121.10 (16)C26—C25—C24121.44 (15)
C4—C5—H5119.5C26—C25—H25119.3
C6—C5—H5119.5C24—C25—H25119.3
C5—C6—C7120.96 (15)C25—C26—C27121.34 (15)
C5—C6—H6119.5C25—C26—H26119.3
C7—C6—H6119.5C27—C26—H26119.3
C8—C7—C6117.81 (15)C28—C27—C26116.89 (15)
C8—C7—H7121.1C28—C27—H27121.6
C6—C7—H7121.1C26—C27—H27121.6
C7—C8—C3120.92 (15)C27—C28—C23121.71 (15)
C7—C8—C9130.92 (15)C27—C28—C29130.24 (15)
C3—C8—C9108.15 (14)C23—C28—C29108.03 (13)
O19—C9—N1124.58 (16)O39—C29—N21124.42 (15)
O19—C9—C8129.52 (16)O39—C29—C28129.53 (15)
N1—C9—C8105.91 (13)N21—C29—C28106.03 (13)
N1—C10—C11113.51 (14)N21—C30—C31112.88 (13)
N1—C10—H10A108.9N21—C30—H30A109.0
C11—C10—H10A108.9C31—C30—H30A109.0
N1—C10—H10B108.9N21—C30—H30B109.0
C11—C10—H10B108.9C31—C30—H30B109.0
H10A—C10—H10B107.7H30A—C30—H30B107.8
O12—C11—C13124.43 (15)O32—C31—C33125.11 (14)
O12—C11—C10120.35 (14)O32—C31—C30120.25 (13)
C13—C11—C10115.22 (14)C33—C31—C30114.58 (13)
N14—C13—C17107.25 (14)N34—C33—C37106.88 (13)
N14—C13—C11123.60 (14)N34—C33—C31124.40 (14)
C17—C13—C11129.14 (15)C37—C33—C31128.71 (14)
C15—N14—C13108.60 (14)C35—N34—C33108.67 (13)
C15—N14—C20123.49 (15)C35—N34—C40124.11 (14)
C13—N14—C20127.92 (14)C33—N34—C40127.20 (13)
N14—C15—C16109.35 (16)N34—C35—C36109.18 (15)
N14—C15—H15125.3N34—C35—H35125.4
C16—C15—H15125.3C36—C35—H35125.4
C15—C16—C17107.07 (16)C35—C36—C37107.34 (15)
C15—C16—H16126.5C35—C36—H36126.3
C17—C16—H16126.5C37—C36—H36126.3
C13—C17—C16107.74 (16)C36—C37—C33107.93 (14)
C13—C17—H17126.1C36—C37—H37126.0
C16—C17—H17126.1C33—C37—H37126.0
N14—C20—H20A109.5N34—C40—H40A109.5
N14—C20—H20B109.5N34—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
N14—C20—H20C109.5N34—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
C9—N1—C2—O18179.77 (15)C29—N21—C22—O38176.76 (15)
C10—N1—C2—O185.2 (2)C30—N21—C22—O386.4 (2)
C9—N1—C2—C31.54 (17)C29—N21—C22—C231.60 (17)
C10—N1—C2—C3173.48 (14)C30—N21—C22—C23171.96 (13)
O18—C2—C3—C40.6 (3)O38—C22—C23—C241.2 (3)
N1—C2—C3—C4179.19 (15)N21—C22—C23—C24179.45 (15)
O18—C2—C3—C8178.89 (16)O38—C22—C23—C28177.41 (16)
N1—C2—C3—C80.28 (16)N21—C22—C23—C280.87 (16)
C8—C3—C4—C51.0 (2)C28—C23—C24—C250.4 (2)
C2—C3—C4—C5178.42 (15)C22—C23—C24—C25178.77 (15)
C3—C4—C5—C60.7 (2)C23—C24—C25—C260.3 (2)
C4—C5—C6—C70.4 (3)C24—C25—C26—C270.0 (2)
C5—C6—C7—C81.2 (2)C25—C26—C27—C280.3 (2)
C6—C7—C8—C31.0 (2)C26—C27—C28—C230.3 (2)
C6—C7—C8—C9179.49 (15)C26—C27—C28—C29178.62 (15)
C4—C3—C8—C70.2 (2)C24—C23—C28—C270.0 (2)
C2—C3—C8—C7179.38 (13)C22—C23—C28—C27178.75 (14)
C4—C3—C8—C9179.49 (14)C24—C23—C28—C29178.60 (13)
C2—C3—C8—C90.98 (16)C22—C23—C28—C290.11 (16)
C2—N1—C9—O19177.88 (15)C22—N21—C29—O39176.96 (15)
C10—N1—C9—O197.1 (3)C30—N21—C29—O396.4 (2)
C2—N1—C9—C82.12 (17)C22—N21—C29—C281.68 (17)
C10—N1—C9—C8172.89 (14)C30—N21—C29—C28172.23 (13)
C7—C8—C9—O191.5 (3)C27—C28—C29—O391.0 (3)
C3—C8—C9—O19178.12 (16)C23—C28—C29—O39177.49 (16)
C7—C8—C9—N1178.52 (16)C27—C28—C29—N21179.54 (16)
C3—C8—C9—N11.88 (17)C23—C28—C29—N211.06 (16)
C2—N1—C10—C11106.72 (18)C22—N21—C30—C31107.89 (17)
C9—N1—C10—C1178.9 (2)C29—N21—C30—C3182.75 (18)
N1—C10—C11—O1216.2 (2)N21—C30—C31—O3218.2 (2)
N1—C10—C11—C13164.30 (14)N21—C30—C31—C33164.23 (13)
O12—C11—C13—N143.1 (3)O32—C31—C33—N341.2 (2)
C10—C11—C13—N14177.40 (15)C30—C31—C33—N34178.61 (14)
O12—C11—C13—C17178.50 (17)O32—C31—C33—C37177.80 (16)
C10—C11—C13—C171.0 (3)C30—C31—C33—C370.4 (2)
C17—C13—N14—C150.31 (18)C37—C33—N34—C350.45 (17)
C11—C13—N14—C15178.39 (15)C31—C33—N34—C35178.71 (14)
C17—C13—N14—C20179.46 (15)C37—C33—N34—C40178.90 (15)
C11—C13—N14—C201.8 (3)C31—C33—N34—C400.3 (2)
C13—N14—C15—C160.3 (2)C33—N34—C35—C360.11 (19)
C20—N14—C15—C16179.47 (16)C40—N34—C35—C36178.62 (15)
N14—C15—C16—C170.2 (2)N34—C35—C36—C370.3 (2)
N14—C13—C17—C160.19 (19)C35—C36—C37—C330.6 (2)
C11—C13—C17—C16178.41 (16)N34—C33—C37—C360.62 (18)
C15—C16—C17—C130.0 (2)C31—C33—C37—C36178.50 (15)

Experimental details

Crystal data
Chemical formulaC15H12N2O3
Mr268.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)10.8897 (7), 14.8466 (4), 15.8200 (9)
β (°) 101.619 (3)
V3)2505.3 (2)
Z8
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.51 × 0.29 × 0.26
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5001, 4744, 4400
Rint0.034
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.05
No. of reflections4744
No. of parameters364
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAndersen, A. G. Jr & Exner, M. M. (1977). J. Org. Chem. 42, 3952–3955.  CrossRef Web of Science Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKatritzky, A. R., Suzuki, K., Singh, S. K. & He, H.-Y. (2003). J. Org. Chem. 68, 5720–5723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMassa, S., Di Santo, R. & Artico, M. (1990). J. Heterocycl. Chem. 27, 1131–113.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds