metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1198-m1199

catena-Poly[[[di­aqua­copper(II)]-bis­­[μ2-1,3-bis­­(1,2,4-triazol-1-yl)propane]] dinitrate monohydrate]

aCollege of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: encui_yang@yahoo.com.cn

(Received 31 August 2009; accepted 5 September 2009; online 12 September 2009)

The title CuII coordination polymer, {[Cu(C7H10N6)2(H2O)2](NO3)2·H2O}n, was obtained by the reaction of equimolar Cu(NO3)2·4H2O and 1,3-bis­(1,2,4-triazol-1-yl)propane (btp) in a water–methanol solvent. The CuII atom is located on a centre of inversion and has an elongated octa­hedral coordination geometry formed by four N atoms from four symmetry-related btp ligands and two coordinated water mol­ecules. Adjacent CuII atoms are connected by btp ligands, generating a double-stranded chain. The nitrate anion is disordered over two positions in a 0.828 (7):0.172 (2) ratio.

Related literature

For the structures and applications of functional metal complexes in coordination and materials science, see: Blake et al. (1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]); Evans & Lin (2001[Evans, O. R. & Lin, W.-B. (2001). Chem. Mater. 13, 3009-3017.]); James (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]); Janiak (2003[Janiak, C. (2003). Dalton. Trans. pp. 2781-2804.]); Mitziet al. (2001[Mitzi, D. B. (2001). Dalton. Trans. pp. 1-12.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Papaefstathiou & MacGillivray (2003[Papaefstathiou, G. S. & MacGillivray, L. R. (2003). Coord. Chem. Rev. 246, 169-184.]). For the structures of btp-based metal complexes, see: Wang et al. (2006[Wang, X.-L., Qin, C., Wang, E.-B., Su, Z.-M., Li, Y.-G. & Xu, L. (2006). Angew. Chem. Int. Ed. 45, 7411-7414.]); Yin et al. (2006[Yin, G., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2006). J. Mol. Struct. 837, 263-268.]); Zhu et al. (2009[Zhu, X., Liu, K., Yang, Y., Li, B.-L. & Zhang, Y. (2009). J. Coord. Chem., 62, 2358-2366.]); Van Albada et al. (2000[Van Albada, G. A., Guijt, R. C., Haasnoot, J. G., Lutz, M., Spek, A. L. & Reedijk, J. (2000). Eur. J. Inorg. Chem. pp. 121-126.]); Tian et al. (2008[Tian, A.-X., Ying, J., Peng, J., Sha, J.-Q., Han, Z.-G., Ma, J.-F., Su, Z.-M., Hu, N.-H. & Jia, H.-Q. (2008). Inorg. Chem. 47, 3274-3283.]); Zhao et al. (2002[Zhao, Q.-H., Li, H.-F., Wang, X.-F. & Chen, Z.-D. (2002). New J. Chem. 26, 1709-1710.]); Gu et al. (2008[Gu, Z.-G., Xu, Y.-F., Zhou, X.-H., Zuo, J.-L. & You, X.-Z. (2008). Cryst. Growth Des. 8, 1306-1312.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H10N6)2(H2O)2](NO3)2·H2O

  • Mr = 598.03

  • Monoclinic, C 2/c

  • a = 11.177 (3) Å

  • b = 12.449 (3) Å

  • c = 17.312 (4) Å

  • β = 91.655 (4)°

  • V = 2408.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.858

  • 5954 measured reflections

  • 2115 independent reflections

  • 1874 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.07

  • 2115 reflections

  • 184 parameters

  • 26 restraints

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N6i 1.998 (2)
Cu1—N3 2.035 (3)
Cu1—O4 2.456 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, rapid progress has been made on the the construction and applications of the functional metal complexes in diverse science fields (Blake et al., 1999; Evans et al., 2001; James et al., 2003; Janiak et al., 2003; Mitzi et al., 2001; Moulton et al., 2001; Papaefstathiou et al., 2003). In this regard, 1,3-bis(1,2,4-triazol-1-yl)propane(btp), one of the most popular derivatives of 1,2,4-triazole, has received more and more attention in the fields of coordination chemistry and material science due to its multiple binding sites, flexible skeleton and intense fluorescence emission behavior (Wang et al., 2006; Yin et al., 2006; Zhu et al., 2009). Indeed, bearing two triazolyl groups being connected by a flexible propane linker, btp ligand in the transitional metal complexes has exhibited variable bi- (Van Albada et al., 2000), tri- and tetra-dentate (Tian et al., 2008) coordination modes as well as commonly observed anti-anti, anti-gauche, and gauche-gauche conformations. Thus, a variety of interesting structures ranged from the discrete binuclear, infinite one-dimensional Z-shaped, ladder-like, double-, and triple-stranded chains to two-dimensional grid-like layer, have been generated. Obviously, the structural diversity of the btp-based metal complexes depends strongly on the binding features of the metal ions and the functional ligands. Herein, to further investigate the binding behavior of the btp ligand, a double-stranded CuII coordination chain, (I), was obtained by the reaction of Cu(NO3)2. 4H2O and btp in mixed water-methanol medium.

X-ray structural analysis reveals that I consists of a one-dimensional double-stranded cationic chain and a disorder NO3- for charge compensation. The CuII atom locates at special position and is in an elongated octahedral coordination geometry constructed by four triazole nitrogen atoms (N3, N3A, N6B, N6C) from four symmetry-related btp ligands in an equatorial plane and two coordinated water molecules occupying the apical positions (see Figure 1). The Cu–N distances are ca. 0.5 Å shorter than that of Cu–O separation due to the Jahn–Teller effect (see Table 1).

Pairs of neutral btp ligands adopt an exo-bidentate (µ2-btp-κ1N4:κ1N4') binding mode to connect the adjacent CuII atoms into an infinite double-stranded chain along the diagonal of the crystallographic ab plane (see Figure 2). As a result, the closed 20–membered [Cu2(btp)2] metallomacrocycles are alternately generated with the nearest Cu···Cu separation of 8.3654 (13) Å. Such the polymeric chain has ever been obtained in the complexes of [Co(btp)2(NCS)2]n (Zhao et al., 2002), [Fe(btp)2(NCS)2]n (Gu et al., 2008), and [Zn(btp)2(dca)2]n (Zhu et al., 2009), although the metal center and the coligand are different from each other. Notably, the torsion angles of N1/C3/C4/C5 and C3/C4/C5/N4 are -65.695 (18)° and 108.753 (16)°, respectively. And the dihedral angle between the two triazole rings is 84.057 (16)°, which suggests a scarcely observed gauche-eclipsed conformation of the btp ligand.

Related literature top

For the structures and applications of functional metal complexes in coordination and materials science, see: Blake et al. (1999); Evans et al. (2001); James et al. (2003); Janiak et al. (2003); Mitzi et al. (2001); Moulton et al. (2001); Papaefstathiou et al. (2003). For the structures of btp-based metal complexes, see: Wang et al. (2006); Yin et al. (2006); Zhu et al. (2009); Van Albada et al. (2000); Tian et al. (2008); Zhao et al. (2002); Gu et al. (2008).

Experimental top

To an aqueous solution (10 ml) of Cu(NO3)2.4H2O (30.8 mg, 0.1 mmol) was slowly added a methanol solution (10 ml) of btp (17.8 mg, 0.1 mmol) with constant stirring. The resulting mixture was further stirred for half an hour and then filtered. Upon slow evaporation of the filtrate at room tempreture, blue block-shaped crystals suitable for single-crystal X-ray diffraction analysis were isolated directly within two weeks, washed with ethanol and dried in air (yield: 40% based on CuII salt). Elemental analysis calculated for C7H13Cu0.5N7O4.5: C, 28.12; H, 4.38; N, 32.79%; found: C, 28.22; H, 4.29; N, 32.61%.

Refinement top

H atoms were included in calculated positions and treated as riding atoms, with C–H = 0.93 (aromatic) or 0.97 (methylene) Å and O–H = 0.85 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H)= 1.2Uiso (C), Uiso(H)= 1.5Uiso (O)]. The nitrate disordered over two positions with a site occupation factor of 0.828 (7) for the major occupied site. The position of the highest peak is at (0.2337, 0.4251, 0.2774), 1.06Å from O3, and the position of the deepest hole is at (0.1726, 0.3718, 0.2796), 0.39 Å from O3'.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The local coordination environment of the CuII atom in I. Displacement ellipsoids were drawn at 30% probability. [Symmetry codes: (A) –x + 3/2, –y + 1/2, –z, (B) x + 1/2, y + 1/2, z, (C) –x + 2, –y + 1, –z.]
[Figure 2] Fig. 2. Part of the chain of the title compound.
catena-Poly[[[diaquacopper(II)]-bis[µ2-1,3-bis(1,2,4-triazol-1- yl)propane]] dinitrate monohydrate] top
Crystal data top
[Cu(C7H10N6)2(H2O)2](NO3)2·H2OF(000) = 1236
Mr = 598.03Dx = 1.650 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.177 (3) ÅCell parameters from 3805 reflections
b = 12.449 (3) Åθ = 2.5–27.7°
c = 17.312 (4) ŵ = 0.98 mm1
β = 91.655 (4)°T = 296 K
V = 2408.0 (9) Å3Block, blue
Z = 40.24 × 0.18 × 0.16 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2115 independent reflections
Radiation source: fine-focus sealed tube1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.798, Tmax = 0.858k = 1414
5954 measured reflectionsl = 2014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0519P)2 + 7.175P]
where P = (Fo2 + 2Fc2)/3
2115 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.93 e Å3
26 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cu(C7H10N6)2(H2O)2](NO3)2·H2OV = 2408.0 (9) Å3
Mr = 598.03Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.177 (3) ŵ = 0.98 mm1
b = 12.449 (3) ÅT = 296 K
c = 17.312 (4) Å0.24 × 0.18 × 0.16 mm
β = 91.655 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
2115 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1874 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.858Rint = 0.014
5954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04126 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.07Δρmax = 0.93 e Å3
2115 reflectionsΔρmin = 0.56 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu11.00000.50000.00000.0316 (2)
N11.1092 (2)0.1933 (2)0.06359 (16)0.0348 (6)
N21.1152 (3)0.1788 (2)0.01363 (17)0.0422 (7)
N31.0493 (2)0.3437 (2)0.01382 (15)0.0337 (6)
N40.8317 (2)0.0666 (2)0.09733 (15)0.0341 (6)
N50.8401 (2)0.1305 (2)0.03421 (16)0.0415 (7)
N60.6637 (2)0.0474 (2)0.03457 (16)0.0339 (6)
C11.0779 (3)0.2711 (3)0.0409 (2)0.0407 (8)
H11.07160.28570.09360.049*
C21.0699 (3)0.2906 (2)0.07910 (19)0.0350 (7)
H21.05850.31780.12840.042*
C31.1409 (3)0.1067 (3)0.1175 (2)0.0405 (8)
H3A1.15470.13700.16860.049*
H3B1.21510.07400.10180.049*
C41.0458 (3)0.0208 (3)0.1216 (2)0.0386 (8)
H4A1.07690.03800.15310.046*
H4B1.02970.00700.07000.046*
C50.9283 (3)0.0588 (3)0.1550 (2)0.0433 (8)
H5A0.90500.00930.19510.052*
H5B0.94060.12870.17870.052*
C60.7370 (3)0.1162 (3)0.0014 (2)0.0382 (7)
H60.71580.15050.04760.046*
C70.7269 (3)0.0179 (3)0.0965 (2)0.0376 (7)
H70.70150.02990.13390.045*
N70.2452 (3)0.3129 (3)0.2674 (2)0.0646 (10)
O10.293 (2)0.2228 (13)0.2776 (16)0.147 (3)0.172 (7)
O20.1369 (11)0.3192 (19)0.2856 (14)0.1018 (18)0.172 (7)
O30.2982 (18)0.3883 (13)0.2421 (14)0.229 (6)0.172 (7)
O1'0.2728 (6)0.2639 (6)0.3235 (3)0.147 (3)0.828 (7)
O2'0.3137 (4)0.3107 (5)0.2130 (3)0.1018 (18)0.828 (7)
O3'0.1580 (7)0.3633 (8)0.2599 (3)0.229 (6)0.828 (7)
O40.9447 (3)0.5006 (2)0.13626 (15)0.0523 (7)
H4'0.90820.45290.16160.078*
H4"0.96640.55690.16060.078*
O50.00000.6545 (3)0.25000.0667 (11)
H50.05640.70030.24950.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0248 (3)0.0273 (3)0.0426 (3)0.0009 (2)0.0023 (2)0.0017 (2)
N10.0295 (13)0.0296 (14)0.0451 (16)0.0009 (11)0.0017 (11)0.0012 (12)
N20.0463 (16)0.0349 (15)0.0457 (17)0.0025 (13)0.0070 (13)0.0027 (13)
N30.0293 (13)0.0293 (13)0.0426 (15)0.0003 (11)0.0003 (11)0.0004 (12)
N40.0284 (13)0.0361 (14)0.0377 (14)0.0019 (11)0.0006 (11)0.0006 (12)
N50.0334 (14)0.0441 (16)0.0468 (16)0.0076 (13)0.0021 (12)0.0088 (13)
N60.0278 (13)0.0299 (14)0.0438 (15)0.0016 (11)0.0010 (11)0.0004 (12)
C10.0440 (19)0.0373 (18)0.0409 (18)0.0026 (15)0.0050 (15)0.0000 (15)
C20.0314 (16)0.0310 (16)0.0424 (18)0.0002 (13)0.0004 (13)0.0018 (14)
C30.0303 (16)0.0353 (17)0.055 (2)0.0033 (14)0.0073 (14)0.0066 (16)
C40.0363 (17)0.0300 (16)0.049 (2)0.0015 (14)0.0071 (15)0.0054 (14)
C50.0358 (18)0.055 (2)0.0386 (18)0.0058 (16)0.0068 (14)0.0005 (16)
C60.0337 (17)0.0366 (17)0.0443 (18)0.0014 (14)0.0027 (14)0.0063 (15)
C70.0327 (17)0.0372 (18)0.0428 (18)0.0054 (14)0.0007 (14)0.0049 (14)
N70.075 (3)0.070 (2)0.049 (2)0.006 (2)0.0036 (18)0.0077 (19)
O10.186 (6)0.172 (6)0.086 (4)0.005 (5)0.028 (4)0.069 (5)
O20.113 (4)0.117 (4)0.077 (3)0.031 (3)0.038 (3)0.014 (3)
O30.254 (9)0.362 (13)0.073 (4)0.241 (10)0.020 (5)0.005 (6)
O1'0.186 (6)0.172 (6)0.086 (4)0.005 (5)0.028 (4)0.069 (5)
O2'0.113 (4)0.117 (4)0.077 (3)0.031 (3)0.038 (3)0.014 (3)
O3'0.254 (9)0.362 (13)0.073 (4)0.241 (10)0.020 (5)0.005 (6)
O40.0625 (17)0.0489 (15)0.0459 (15)0.0062 (12)0.0086 (12)0.0015 (12)
O50.070 (3)0.052 (2)0.078 (3)0.0000.008 (2)0.000
Geometric parameters (Å, º) top
Cu1—N6i1.998 (2)C3—C41.512 (5)
Cu1—N6ii1.998 (2)C3—H3A0.9700
Cu1—N3iii2.035 (3)C3—H3B0.9700
Cu1—N32.035 (3)C4—C51.526 (5)
Cu1—O42.456 (3)C4—H4A0.9700
N1—C21.319 (4)C4—H4B0.9700
N1—N21.352 (4)C5—H5A0.9700
N1—C31.462 (4)C5—H5B0.9700
N2—C11.306 (4)C6—H60.9300
N3—C21.324 (4)C7—H70.9300
N3—C11.355 (4)N7—O3'1.164 (6)
N4—C71.318 (4)N7—O1'1.180 (5)
N4—N51.357 (4)N7—O31.199 (11)
N4—C51.452 (4)N7—O2'1.232 (5)
N5—C61.304 (4)N7—O11.253 (10)
N6—C71.319 (4)N7—O21.261 (10)
N6—C61.350 (4)O4—H4'0.8499
N6—Cu1iv1.998 (2)O4—H4"0.8500
C1—H10.9300O5—H50.8500
C2—H20.9300
N6i—Cu1—N6ii180.0C3—C4—C5114.4 (3)
N6i—Cu1—N3iii89.71 (11)C3—C4—H4A108.7
N6ii—Cu1—N3iii90.29 (11)C5—C4—H4A108.7
N6i—Cu1—N390.29 (11)C3—C4—H4B108.7
N6ii—Cu1—N389.71 (10)C5—C4—H4B108.7
N3iii—Cu1—N3180.0H4A—C4—H4B107.6
N6i—Cu1—O488.00 (10)N4—C5—C4113.1 (3)
N6ii—Cu1—O492.00 (10)N4—C5—H5A109.0
N3iii—Cu1—O492.03 (10)C4—C5—H5A109.0
N3—Cu1—O487.97 (10)N4—C5—H5B109.0
C2—N1—N2110.5 (3)C4—C5—H5B109.0
C2—N1—C3128.6 (3)H5A—C5—H5B107.8
N2—N1—C3120.9 (3)N5—C6—N6114.1 (3)
C1—N2—N1102.5 (3)N5—C6—H6122.9
C2—N3—C1103.0 (3)N6—C6—H6122.9
C2—N3—Cu1128.1 (2)N4—C7—N6109.6 (3)
C1—N3—Cu1128.6 (2)N4—C7—H7125.2
C7—N4—N5110.1 (3)N6—C7—H7125.2
C7—N4—C5128.3 (3)O3'—N7—O1'124.8 (5)
N5—N4—C5121.6 (3)O3'—N7—O387.6 (11)
C6—N5—N4102.7 (3)O1'—N7—O3125.8 (13)
C7—N6—C6103.5 (3)O3'—N7—O2'117.6 (5)
C7—N6—Cu1iv128.7 (2)O1'—N7—O2'117.6 (5)
C6—N6—Cu1iv127.7 (2)O3—N7—O2'54.1 (11)
N2—C1—N3114.4 (3)O3'—N7—O1148.4 (13)
N2—C1—H1122.8O1'—N7—O147.2 (12)
N3—C1—H1122.8O3—N7—O1122.6 (9)
N1—C2—N3109.6 (3)O2'—N7—O179.3 (10)
N1—C2—H2125.2O3'—N7—O235.7 (10)
N3—C2—H2125.2O1'—N7—O293.3 (10)
N1—C3—C4113.2 (3)O3—N7—O2122.0 (9)
N1—C3—H3A108.9O2'—N7—O2144.5 (12)
C4—C3—H3A108.9O1—N7—O2115.4 (8)
N1—C3—H3B108.9Cu1—O4—H4'129.2
C4—C3—H3B108.9Cu1—O4—H4"113.7
H3A—C3—H3B107.8H4'—O4—H4"117.1
C2—N1—N2—C10.1 (3)C3—N1—C2—N3178.7 (3)
C3—N1—N2—C1178.5 (3)C1—N3—C2—N10.5 (3)
N6i—Cu1—N3—C271.7 (3)Cu1—N3—C2—N1175.0 (2)
N6ii—Cu1—N3—C2108.3 (3)C2—N1—C3—C4102.6 (4)
N3iii—Cu1—N3—C2142 (3)N2—N1—C3—C475.7 (4)
O4—Cu1—N3—C216.3 (3)N1—C3—C4—C565.6 (4)
N6i—Cu1—N3—C1102.6 (3)C7—N4—C5—C4122.2 (4)
N6ii—Cu1—N3—C177.4 (3)N5—N4—C5—C458.5 (4)
N3iii—Cu1—N3—C132 (4)C3—C4—C5—N4108.7 (3)
O4—Cu1—N3—C1169.4 (3)N4—N5—C6—N60.2 (4)
C7—N4—N5—C60.3 (4)C7—N6—C6—N50.0 (4)
C5—N4—N5—C6179.1 (3)Cu1iv—N6—C6—N5178.7 (2)
N1—N2—C1—N30.4 (4)N5—N4—C7—N60.2 (4)
C2—N3—C1—N20.5 (4)C5—N4—C7—N6179.1 (3)
Cu1—N3—C1—N2174.9 (2)C6—N6—C7—N40.1 (4)
N2—N1—C2—N30.2 (4)Cu1iv—N6—C7—N4178.9 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y+1/2, z; (iii) x+2, y+1, z; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H10N6)2(H2O)2](NO3)2·H2O
Mr598.03
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)11.177 (3), 12.449 (3), 17.312 (4)
β (°) 91.655 (4)
V3)2408.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.24 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
5954, 2115, 1874
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.07
No. of reflections2115
No. of parameters184
No. of restraints26
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.56

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N6i1.998 (2)Cu1—N32.035 (3)
Cu1—N6ii1.998 (2)Cu1—O42.456 (3)
Cu1—N3iii2.035 (3)
N6i—Cu1—N6ii180.0N3iii—Cu1—N3180.0
N6i—Cu1—N3iii89.71 (11)N6i—Cu1—O488.00 (10)
N6ii—Cu1—N3iii90.29 (11)N6ii—Cu1—O492.00 (10)
N6i—Cu1—N390.29 (11)N3iii—Cu1—O492.03 (10)
N6ii—Cu1—N389.71 (10)N3—Cu1—O487.97 (10)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y+1/2, z; (iii) x+2, y+1, z.
 

Acknowledgements

This work was supported financially by the Advance Project of Young Teachers in Tianjin Normal university (to ECY).

References

First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, O. R. & Lin, W.-B. (2001). Chem. Mater. 13, 3009–3017.  Web of Science CSD CrossRef CAS Google Scholar
First citationGu, Z.-G., Xu, Y.-F., Zhou, X.-H., Zuo, J.-L. & You, X.-Z. (2008). Cryst. Growth Des. 8, 1306–1312.  Web of Science CSD CrossRef CAS Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaniak, C. (2003). Dalton. Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationMitzi, D. B. (2001). Dalton. Trans. pp. 1–12.  CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPapaefstathiou, G. S. & MacGillivray, L. R. (2003). Coord. Chem. Rev. 246, 169–184.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, A.-X., Ying, J., Peng, J., Sha, J.-Q., Han, Z.-G., Ma, J.-F., Su, Z.-M., Hu, N.-H. & Jia, H.-Q. (2008). Inorg. Chem. 47, 3274-3283.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVan Albada, G. A., Guijt, R. C., Haasnoot, J. G., Lutz, M., Spek, A. L. & Reedijk, J. (2000). Eur. J. Inorg. Chem. pp. 121–126.  CrossRef Google Scholar
First citationWang, X.-L., Qin, C., Wang, E.-B., Su, Z.-M., Li, Y.-G. & Xu, L. (2006). Angew. Chem. Int. Ed. 45, 7411–7414.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, G., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2006). J. Mol. Struct. 837, 263–268.  Web of Science CSD CrossRef Google Scholar
First citationZhao, Q.-H., Li, H.-F., Wang, X.-F. & Chen, Z.-D. (2002). New J. Chem. 26, 1709–1710.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, X., Liu, K., Yang, Y., Li, B.-L. & Zhang, Y. (2009). J. Coord. Chem., 62, 2358–2366.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1198-m1199
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds