metal-organic compounds
catena-Poly[[[diaquacopper(II)]-bis[μ2-1,3-bis(1,2,4-triazol-1-yl)propane]] dinitrate monohydrate]
aCollege of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: encui_yang@yahoo.com.cn
The title CuII coordination polymer, {[Cu(C7H10N6)2(H2O)2](NO3)2·H2O}n, was obtained by the reaction of equimolar Cu(NO3)2·4H2O and 1,3-bis(1,2,4-triazol-1-yl)propane (btp) in a water–methanol solvent. The CuII atom is located on a centre of inversion and has an elongated octahedral coordination geometry formed by four N atoms from four symmetry-related btp ligands and two coordinated water molecules. Adjacent CuII atoms are connected by btp ligands, generating a double-stranded chain. The nitrate anion is disordered over two positions in a 0.828 (7):0.172 (2) ratio.
Related literature
For the structures and applications of functional metal complexes in coordination and materials science, see: Blake et al. (1999); Evans & Lin (2001); James (2003); Janiak (2003); Mitziet al. (2001); Moulton & Zaworotko (2001); Papaefstathiou & MacGillivray (2003). For the structures of btp-based metal complexes, see: Wang et al. (2006); Yin et al. (2006); Zhu et al. (2009); Van Albada et al. (2000); Tian et al. (2008); Zhao et al. (2002); Gu et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809035958/bt5049sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809035958/bt5049Isup2.hkl
To an aqueous solution (10 ml) of Cu(NO3)2.4H2O (30.8 mg, 0.1 mmol) was slowly added a methanol solution (10 ml) of btp (17.8 mg, 0.1 mmol) with constant stirring. The resulting mixture was further stirred for half an hour and then filtered. Upon slow evaporation of the filtrate at room tempreture, blue block-shaped crystals suitable for single-crystal X-ray
were isolated directly within two weeks, washed with ethanol and dried in air (yield: 40% based on CuII salt). Elemental analysis calculated for C7H13Cu0.5N7O4.5: C, 28.12; H, 4.38; N, 32.79%; found: C, 28.22; H, 4.29; N, 32.61%.H atoms were included in calculated positions and treated as riding atoms, with C–H = 0.93 (aromatic) or 0.97 (methylene) Å and O–H = 0.85 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H)= 1.2Uiso (C), Uiso(H)= 1.5Uiso (O)]. The nitrate disordered over two positions with a site occupation factor of 0.828 (7) for the major occupied site. The position of the highest peak is at (0.2337, 0.4251, 0.2774), 1.06Å from O3, and the position of the deepest hole is at (0.1726, 0.3718, 0.2796), 0.39 Å from O3'.
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C7H10N6)2(H2O)2](NO3)2·H2O | F(000) = 1236 |
Mr = 598.03 | Dx = 1.650 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.177 (3) Å | Cell parameters from 3805 reflections |
b = 12.449 (3) Å | θ = 2.5–27.7° |
c = 17.312 (4) Å | µ = 0.98 mm−1 |
β = 91.655 (4)° | T = 296 K |
V = 2408.0 (9) Å3 | Block, blue |
Z = 4 | 0.24 × 0.18 × 0.16 mm |
Bruker APEXII area-detector diffractometer | 2115 independent reflections |
Radiation source: fine-focus sealed tube | 1874 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
phi and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→13 |
Tmin = 0.798, Tmax = 0.858 | k = −14→14 |
5954 measured reflections | l = −20→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0519P)2 + 7.175P] where P = (Fo2 + 2Fc2)/3 |
2115 reflections | (Δ/σ)max < 0.001 |
184 parameters | Δρmax = 0.93 e Å−3 |
26 restraints | Δρmin = −0.56 e Å−3 |
[Cu(C7H10N6)2(H2O)2](NO3)2·H2O | V = 2408.0 (9) Å3 |
Mr = 598.03 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.177 (3) Å | µ = 0.98 mm−1 |
b = 12.449 (3) Å | T = 296 K |
c = 17.312 (4) Å | 0.24 × 0.18 × 0.16 mm |
β = 91.655 (4)° |
Bruker APEXII area-detector diffractometer | 2115 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1874 reflections with I > 2σ(I) |
Tmin = 0.798, Tmax = 0.858 | Rint = 0.014 |
5954 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 26 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.93 e Å−3 |
2115 reflections | Δρmin = −0.56 e Å−3 |
184 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 1.0000 | 0.5000 | 0.0000 | 0.0316 (2) | |
N1 | 1.1092 (2) | 0.1933 (2) | 0.06359 (16) | 0.0348 (6) | |
N2 | 1.1152 (3) | 0.1788 (2) | −0.01363 (17) | 0.0422 (7) | |
N3 | 1.0493 (2) | 0.3437 (2) | 0.01382 (15) | 0.0337 (6) | |
N4 | 0.8317 (2) | 0.0666 (2) | 0.09733 (15) | 0.0341 (6) | |
N5 | 0.8401 (2) | 0.1305 (2) | 0.03421 (16) | 0.0415 (7) | |
N6 | 0.6637 (2) | 0.0474 (2) | 0.03457 (16) | 0.0339 (6) | |
C1 | 1.0779 (3) | 0.2711 (3) | −0.0409 (2) | 0.0407 (8) | |
H1 | 1.0716 | 0.2857 | −0.0936 | 0.049* | |
C2 | 1.0699 (3) | 0.2906 (2) | 0.07910 (19) | 0.0350 (7) | |
H2 | 1.0585 | 0.3178 | 0.1284 | 0.042* | |
C3 | 1.1409 (3) | 0.1067 (3) | 0.1175 (2) | 0.0405 (8) | |
H3A | 1.1547 | 0.1370 | 0.1686 | 0.049* | |
H3B | 1.2151 | 0.0740 | 0.1018 | 0.049* | |
C4 | 1.0458 (3) | 0.0208 (3) | 0.1216 (2) | 0.0386 (8) | |
H4A | 1.0769 | −0.0380 | 0.1531 | 0.046* | |
H4B | 1.0297 | −0.0070 | 0.0700 | 0.046* | |
C5 | 0.9283 (3) | 0.0588 (3) | 0.1550 (2) | 0.0433 (8) | |
H5A | 0.9050 | 0.0093 | 0.1951 | 0.052* | |
H5B | 0.9406 | 0.1287 | 0.1787 | 0.052* | |
C6 | 0.7370 (3) | 0.1162 (3) | −0.0014 (2) | 0.0382 (7) | |
H6 | 0.7158 | 0.1505 | −0.0476 | 0.046* | |
C7 | 0.7269 (3) | 0.0179 (3) | 0.0965 (2) | 0.0376 (7) | |
H7 | 0.7015 | −0.0299 | 0.1339 | 0.045* | |
N7 | 0.2452 (3) | 0.3129 (3) | 0.2674 (2) | 0.0646 (10) | |
O1 | 0.293 (2) | 0.2228 (13) | 0.2776 (16) | 0.147 (3) | 0.172 (7) |
O2 | 0.1369 (11) | 0.3192 (19) | 0.2856 (14) | 0.1018 (18) | 0.172 (7) |
O3 | 0.2982 (18) | 0.3883 (13) | 0.2421 (14) | 0.229 (6) | 0.172 (7) |
O1' | 0.2728 (6) | 0.2639 (6) | 0.3235 (3) | 0.147 (3) | 0.828 (7) |
O2' | 0.3137 (4) | 0.3107 (5) | 0.2130 (3) | 0.1018 (18) | 0.828 (7) |
O3' | 0.1580 (7) | 0.3633 (8) | 0.2599 (3) | 0.229 (6) | 0.828 (7) |
O4 | 0.9447 (3) | 0.5006 (2) | 0.13626 (15) | 0.0523 (7) | |
H4' | 0.9082 | 0.4529 | 0.1616 | 0.078* | |
H4" | 0.9664 | 0.5569 | 0.1606 | 0.078* | |
O5 | 0.0000 | 0.6545 (3) | 0.2500 | 0.0667 (11) | |
H5 | 0.0564 | 0.7003 | 0.2495 | 0.100* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0248 (3) | 0.0273 (3) | 0.0426 (3) | −0.0009 (2) | −0.0023 (2) | 0.0017 (2) |
N1 | 0.0295 (13) | 0.0296 (14) | 0.0451 (16) | 0.0009 (11) | −0.0017 (11) | 0.0012 (12) |
N2 | 0.0463 (16) | 0.0349 (15) | 0.0457 (17) | 0.0025 (13) | 0.0070 (13) | −0.0027 (13) |
N3 | 0.0293 (13) | 0.0293 (13) | 0.0426 (15) | −0.0003 (11) | −0.0003 (11) | 0.0004 (12) |
N4 | 0.0284 (13) | 0.0361 (14) | 0.0377 (14) | −0.0019 (11) | −0.0006 (11) | −0.0006 (12) |
N5 | 0.0334 (14) | 0.0441 (16) | 0.0468 (16) | −0.0076 (13) | −0.0021 (12) | 0.0088 (13) |
N6 | 0.0278 (13) | 0.0299 (14) | 0.0438 (15) | −0.0016 (11) | −0.0010 (11) | 0.0004 (12) |
C1 | 0.0440 (19) | 0.0373 (18) | 0.0409 (18) | −0.0026 (15) | 0.0050 (15) | 0.0000 (15) |
C2 | 0.0314 (16) | 0.0310 (16) | 0.0424 (18) | 0.0002 (13) | −0.0004 (13) | −0.0018 (14) |
C3 | 0.0303 (16) | 0.0353 (17) | 0.055 (2) | 0.0033 (14) | −0.0073 (14) | 0.0066 (16) |
C4 | 0.0363 (17) | 0.0300 (16) | 0.049 (2) | 0.0015 (14) | −0.0071 (15) | 0.0054 (14) |
C5 | 0.0358 (18) | 0.055 (2) | 0.0386 (18) | −0.0058 (16) | −0.0068 (14) | 0.0005 (16) |
C6 | 0.0337 (17) | 0.0366 (17) | 0.0443 (18) | −0.0014 (14) | −0.0027 (14) | 0.0063 (15) |
C7 | 0.0327 (17) | 0.0372 (18) | 0.0428 (18) | −0.0054 (14) | 0.0007 (14) | 0.0049 (14) |
N7 | 0.075 (3) | 0.070 (2) | 0.049 (2) | 0.006 (2) | −0.0036 (18) | −0.0077 (19) |
O1 | 0.186 (6) | 0.172 (6) | 0.086 (4) | 0.005 (5) | 0.028 (4) | 0.069 (5) |
O2 | 0.113 (4) | 0.117 (4) | 0.077 (3) | 0.031 (3) | 0.038 (3) | 0.014 (3) |
O3 | 0.254 (9) | 0.362 (13) | 0.073 (4) | 0.241 (10) | 0.020 (5) | −0.005 (6) |
O1' | 0.186 (6) | 0.172 (6) | 0.086 (4) | 0.005 (5) | 0.028 (4) | 0.069 (5) |
O2' | 0.113 (4) | 0.117 (4) | 0.077 (3) | 0.031 (3) | 0.038 (3) | 0.014 (3) |
O3' | 0.254 (9) | 0.362 (13) | 0.073 (4) | 0.241 (10) | 0.020 (5) | −0.005 (6) |
O4 | 0.0625 (17) | 0.0489 (15) | 0.0459 (15) | −0.0062 (12) | 0.0086 (12) | −0.0015 (12) |
O5 | 0.070 (3) | 0.052 (2) | 0.078 (3) | 0.000 | −0.008 (2) | 0.000 |
Cu1—N6i | 1.998 (2) | C3—C4 | 1.512 (5) |
Cu1—N6ii | 1.998 (2) | C3—H3A | 0.9700 |
Cu1—N3iii | 2.035 (3) | C3—H3B | 0.9700 |
Cu1—N3 | 2.035 (3) | C4—C5 | 1.526 (5) |
Cu1—O4 | 2.456 (3) | C4—H4A | 0.9700 |
N1—C2 | 1.319 (4) | C4—H4B | 0.9700 |
N1—N2 | 1.352 (4) | C5—H5A | 0.9700 |
N1—C3 | 1.462 (4) | C5—H5B | 0.9700 |
N2—C1 | 1.306 (4) | C6—H6 | 0.9300 |
N3—C2 | 1.324 (4) | C7—H7 | 0.9300 |
N3—C1 | 1.355 (4) | N7—O3' | 1.164 (6) |
N4—C7 | 1.318 (4) | N7—O1' | 1.180 (5) |
N4—N5 | 1.357 (4) | N7—O3 | 1.199 (11) |
N4—C5 | 1.452 (4) | N7—O2' | 1.232 (5) |
N5—C6 | 1.304 (4) | N7—O1 | 1.253 (10) |
N6—C7 | 1.319 (4) | N7—O2 | 1.261 (10) |
N6—C6 | 1.350 (4) | O4—H4' | 0.8499 |
N6—Cu1iv | 1.998 (2) | O4—H4" | 0.8500 |
C1—H1 | 0.9300 | O5—H5 | 0.8500 |
C2—H2 | 0.9300 | ||
N6i—Cu1—N6ii | 180.0 | C3—C4—C5 | 114.4 (3) |
N6i—Cu1—N3iii | 89.71 (11) | C3—C4—H4A | 108.7 |
N6ii—Cu1—N3iii | 90.29 (11) | C5—C4—H4A | 108.7 |
N6i—Cu1—N3 | 90.29 (11) | C3—C4—H4B | 108.7 |
N6ii—Cu1—N3 | 89.71 (10) | C5—C4—H4B | 108.7 |
N3iii—Cu1—N3 | 180.0 | H4A—C4—H4B | 107.6 |
N6i—Cu1—O4 | 88.00 (10) | N4—C5—C4 | 113.1 (3) |
N6ii—Cu1—O4 | 92.00 (10) | N4—C5—H5A | 109.0 |
N3iii—Cu1—O4 | 92.03 (10) | C4—C5—H5A | 109.0 |
N3—Cu1—O4 | 87.97 (10) | N4—C5—H5B | 109.0 |
C2—N1—N2 | 110.5 (3) | C4—C5—H5B | 109.0 |
C2—N1—C3 | 128.6 (3) | H5A—C5—H5B | 107.8 |
N2—N1—C3 | 120.9 (3) | N5—C6—N6 | 114.1 (3) |
C1—N2—N1 | 102.5 (3) | N5—C6—H6 | 122.9 |
C2—N3—C1 | 103.0 (3) | N6—C6—H6 | 122.9 |
C2—N3—Cu1 | 128.1 (2) | N4—C7—N6 | 109.6 (3) |
C1—N3—Cu1 | 128.6 (2) | N4—C7—H7 | 125.2 |
C7—N4—N5 | 110.1 (3) | N6—C7—H7 | 125.2 |
C7—N4—C5 | 128.3 (3) | O3'—N7—O1' | 124.8 (5) |
N5—N4—C5 | 121.6 (3) | O3'—N7—O3 | 87.6 (11) |
C6—N5—N4 | 102.7 (3) | O1'—N7—O3 | 125.8 (13) |
C7—N6—C6 | 103.5 (3) | O3'—N7—O2' | 117.6 (5) |
C7—N6—Cu1iv | 128.7 (2) | O1'—N7—O2' | 117.6 (5) |
C6—N6—Cu1iv | 127.7 (2) | O3—N7—O2' | 54.1 (11) |
N2—C1—N3 | 114.4 (3) | O3'—N7—O1 | 148.4 (13) |
N2—C1—H1 | 122.8 | O1'—N7—O1 | 47.2 (12) |
N3—C1—H1 | 122.8 | O3—N7—O1 | 122.6 (9) |
N1—C2—N3 | 109.6 (3) | O2'—N7—O1 | 79.3 (10) |
N1—C2—H2 | 125.2 | O3'—N7—O2 | 35.7 (10) |
N3—C2—H2 | 125.2 | O1'—N7—O2 | 93.3 (10) |
N1—C3—C4 | 113.2 (3) | O3—N7—O2 | 122.0 (9) |
N1—C3—H3A | 108.9 | O2'—N7—O2 | 144.5 (12) |
C4—C3—H3A | 108.9 | O1—N7—O2 | 115.4 (8) |
N1—C3—H3B | 108.9 | Cu1—O4—H4' | 129.2 |
C4—C3—H3B | 108.9 | Cu1—O4—H4" | 113.7 |
H3A—C3—H3B | 107.8 | H4'—O4—H4" | 117.1 |
C2—N1—N2—C1 | −0.1 (3) | C3—N1—C2—N3 | −178.7 (3) |
C3—N1—N2—C1 | 178.5 (3) | C1—N3—C2—N1 | 0.5 (3) |
N6i—Cu1—N3—C2 | 71.7 (3) | Cu1—N3—C2—N1 | −175.0 (2) |
N6ii—Cu1—N3—C2 | −108.3 (3) | C2—N1—C3—C4 | 102.6 (4) |
N3iii—Cu1—N3—C2 | 142 (3) | N2—N1—C3—C4 | −75.7 (4) |
O4—Cu1—N3—C2 | −16.3 (3) | N1—C3—C4—C5 | −65.6 (4) |
N6i—Cu1—N3—C1 | −102.6 (3) | C7—N4—C5—C4 | 122.2 (4) |
N6ii—Cu1—N3—C1 | 77.4 (3) | N5—N4—C5—C4 | −58.5 (4) |
N3iii—Cu1—N3—C1 | −32 (4) | C3—C4—C5—N4 | 108.7 (3) |
O4—Cu1—N3—C1 | 169.4 (3) | N4—N5—C6—N6 | −0.2 (4) |
C7—N4—N5—C6 | 0.3 (4) | C7—N6—C6—N5 | 0.0 (4) |
C5—N4—N5—C6 | −179.1 (3) | Cu1iv—N6—C6—N5 | −178.7 (2) |
N1—N2—C1—N3 | 0.4 (4) | N5—N4—C7—N6 | −0.2 (4) |
C2—N3—C1—N2 | −0.5 (4) | C5—N4—C7—N6 | 179.1 (3) |
Cu1—N3—C1—N2 | 174.9 (2) | C6—N6—C7—N4 | 0.1 (4) |
N2—N1—C2—N3 | −0.2 (4) | Cu1iv—N6—C7—N4 | 178.9 (2) |
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) −x+3/2, −y+1/2, −z; (iii) −x+2, −y+1, −z; (iv) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H10N6)2(H2O)2](NO3)2·H2O |
Mr | 598.03 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 11.177 (3), 12.449 (3), 17.312 (4) |
β (°) | 91.655 (4) |
V (Å3) | 2408.0 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.98 |
Crystal size (mm) | 0.24 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.798, 0.858 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5954, 2115, 1874 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.112, 1.07 |
No. of reflections | 2115 |
No. of parameters | 184 |
No. of restraints | 26 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.93, −0.56 |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).
Cu1—N6i | 1.998 (2) | Cu1—N3 | 2.035 (3) |
Cu1—N6ii | 1.998 (2) | Cu1—O4 | 2.456 (3) |
Cu1—N3iii | 2.035 (3) | ||
N6i—Cu1—N6ii | 180.0 | N3iii—Cu1—N3 | 180.0 |
N6i—Cu1—N3iii | 89.71 (11) | N6i—Cu1—O4 | 88.00 (10) |
N6ii—Cu1—N3iii | 90.29 (11) | N6ii—Cu1—O4 | 92.00 (10) |
N6i—Cu1—N3 | 90.29 (11) | N3iii—Cu1—O4 | 92.03 (10) |
N6ii—Cu1—N3 | 89.71 (10) | N3—Cu1—O4 | 87.97 (10) |
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) −x+3/2, −y+1/2, −z; (iii) −x+2, −y+1, −z. |
Acknowledgements
This work was supported financially by the Advance Project of Young Teachers in Tianjin Normal university (to ECY).
References
Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Evans, O. R. & Lin, W.-B. (2001). Chem. Mater. 13, 3009–3017. Web of Science CSD CrossRef CAS Google Scholar
Gu, Z.-G., Xu, Y.-F., Zhou, X.-H., Zuo, J.-L. & You, X.-Z. (2008). Cryst. Growth Des. 8, 1306–1312. Web of Science CSD CrossRef CAS Google Scholar
James, S. L. (2003). Chem. Soc. Rev. 32, 276–288. Web of Science CrossRef PubMed CAS Google Scholar
Janiak, C. (2003). Dalton. Trans. pp. 2781–2804. Web of Science CrossRef Google Scholar
Mitzi, D. B. (2001). Dalton. Trans. pp. 1–12. CrossRef Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Papaefstathiou, G. S. & MacGillivray, L. R. (2003). Coord. Chem. Rev. 246, 169–184. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, A.-X., Ying, J., Peng, J., Sha, J.-Q., Han, Z.-G., Ma, J.-F., Su, Z.-M., Hu, N.-H. & Jia, H.-Q. (2008). Inorg. Chem. 47, 3274-3283. Web of Science CSD CrossRef PubMed CAS Google Scholar
Van Albada, G. A., Guijt, R. C., Haasnoot, J. G., Lutz, M., Spek, A. L. & Reedijk, J. (2000). Eur. J. Inorg. Chem. pp. 121–126. CrossRef Google Scholar
Wang, X.-L., Qin, C., Wang, E.-B., Su, Z.-M., Li, Y.-G. & Xu, L. (2006). Angew. Chem. Int. Ed. 45, 7411–7414. Web of Science CSD CrossRef CAS Google Scholar
Yin, G., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2006). J. Mol. Struct. 837, 263–268. Web of Science CSD CrossRef Google Scholar
Zhao, Q.-H., Li, H.-F., Wang, X.-F. & Chen, Z.-D. (2002). New J. Chem. 26, 1709–1710. Web of Science CSD CrossRef CAS Google Scholar
Zhu, X., Liu, K., Yang, Y., Li, B.-L. & Zhang, Y. (2009). J. Coord. Chem., 62, 2358–2366. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, rapid progress has been made on the the construction and applications of the functional metal complexes in diverse science fields (Blake et al., 1999; Evans et al., 2001; James et al., 2003; Janiak et al., 2003; Mitzi et al., 2001; Moulton et al., 2001; Papaefstathiou et al., 2003). In this regard, 1,3-bis(1,2,4-triazol-1-yl)propane(btp), one of the most popular derivatives of 1,2,4-triazole, has received more and more attention in the fields of coordination chemistry and material science due to its multiple binding sites, flexible skeleton and intense fluorescence emission behavior (Wang et al., 2006; Yin et al., 2006; Zhu et al., 2009). Indeed, bearing two triazolyl groups being connected by a flexible propane linker, btp ligand in the transitional metal complexes has exhibited variable bi- (Van Albada et al., 2000), tri- and tetra-dentate (Tian et al., 2008) coordination modes as well as commonly observed anti-anti, anti-gauche, and gauche-gauche conformations. Thus, a variety of interesting structures ranged from the discrete binuclear, infinite one-dimensional Z-shaped, ladder-like, double-, and triple-stranded chains to two-dimensional grid-like layer, have been generated. Obviously, the structural diversity of the btp-based metal complexes depends strongly on the binding features of the metal ions and the functional ligands. Herein, to further investigate the binding behavior of the btp ligand, a double-stranded CuII coordination chain, (I), was obtained by the reaction of Cu(NO3)2. 4H2O and btp in mixed water-methanol medium.
X-ray structural analysis reveals that I consists of a one-dimensional double-stranded cationic chain and a disorder NO3- for charge compensation. The CuII atom locates at special position and is in an elongated octahedral coordination geometry constructed by four triazole nitrogen atoms (N3, N3A, N6B, N6C) from four symmetry-related btp ligands in an equatorial plane and two coordinated water molecules occupying the apical positions (see Figure 1). The Cu–N distances are ca. 0.5 Å shorter than that of Cu–O separation due to the Jahn–Teller effect (see Table 1).
Pairs of neutral btp ligands adopt an exo-bidentate (µ2-btp-κ1N4:κ1N4') binding mode to connect the adjacent CuII atoms into an infinite double-stranded chain along the diagonal of the crystallographic ab plane (see Figure 2). As a result, the closed 20–membered [Cu2(btp)2] metallomacrocycles are alternately generated with the nearest Cu···Cu separation of 8.3654 (13) Å. Such the polymeric chain has ever been obtained in the complexes of [Co(btp)2(NCS)2]n (Zhao et al., 2002), [Fe(btp)2(NCS)2]n (Gu et al., 2008), and [Zn(btp)2(dca)2]n (Zhu et al., 2009), although the metal center and the coligand are different from each other. Notably, the torsion angles of N1/C3/C4/C5 and C3/C4/C5/N4 are -65.695 (18)° and 108.753 (16)°, respectively. And the dihedral angle between the two triazole rings is 84.057 (16)°, which suggests a scarcely observed gauche-eclipsed conformation of the btp ligand.