inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Caesium europium(III) polyphosphate, CsEu(PO3)4

aDepartment of Materials Science and Engineering, Yunnan University, Kunming, Yunnan 650091, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: jzhu@ynu.edu.cn

(Received 1 September 2009; accepted 7 September 2009; online 12 September 2009)

Caesium europium polyphosphate, CsEu(PO3)4, was synthesized by a high-temperature solution reaction. Its structure is charaterized by a three-dimensional framework made up of double PO4 spiral chains and EuO8 and CsO11 polyhedra.

Related literature

For the structures, properties and applications of condensed alkaline metal–rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal), see: Chinn & Hong (1975[Chinn, S. R. & Hong, H. Y. P. (1975). Appl. Phys. Lett. 26, 649-651.]); Ettis et al. (2003[Ettis, H., Naïli, H. & Mhiri, T. (2003). Cryst. Growth Des. 3, 599-602.]); Hong (1975[Hong, H. Y. P. (1975). Mater. Res. Bull. 10, 1105-1110.]); Koizumi (1976[Koizumi, H. (1976). Acta Cryst. B32, 266-268.]); Koizumi & Nakano (1978[Koizumi, H. & Nakano, J. (1978). Acta Cryst. B34, 3320-3323.]); Maksimova et al. (1982[Maksimova, S. I., Palkina, K. K., Chibiskova, N. T. & Kuznetsov, V. G. (1982). Izv. Akad. Nauk. SSSR, Neorg. Mater. 18, 653-659.]); Naïli & Mhiri (2005[Naïli, H. & Mhiri, T. (2005). Acta Cryst. E61, i204-i207.]); Otsuka et al. (1977[Otsuka, K., Miyazawa, S., Yamada, T., Iwasaki, H. & Nakano, J. (1977). J. Appl. Phys. 48, 2099-2101.]); Palkina et al. (1978[Palkina, K. K., Maksimova, S. I. & Kuznetsov, V. G. (1978). Izv. Akad. Nauk. SSSR, Neorg. Mater. 14, 284-287.]); Rekik et al. (2004[Rekik, W., Naïli, H. & Mhiri, T. (2004). Acta Cryst. C60, i50-i52.]); Tsujimoto et al. (1977[Tsujimoto, Y., Fukuda, Y. & Fukai, M. (1977). J. Electrochem. Soc. 124, 553-556.]).

Experimental

Crystal data
  • CsEu(PO3)4

  • Mr = 600.75

  • Monoclinic, P 21 /n

  • a = 10.3571 (9) Å

  • b = 8.9615 (5) Å

  • c = 11.1957 (8) Å

  • β = 106.354 (3)°

  • V = 997.09 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.60 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ-scan (XSCANS; Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.545, Tmax = 1.000

  • 7446 measured reflections

  • 2284 independent reflections

  • 2185 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.00

  • 2284 reflections

  • 164 parameters

  • Δρmax = 1.16 e Å−3

  • Δρmin = −1.17 e Å−3

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Condensed alkaline metal-rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal) possess various structures (Ettis et al., 2003; Rekik et al., 2004) and desirable optical properties (Chinn et al., 1975; Otsuka et al., 1977; Tsujimoto et al., 1977; Hong et al., 1975; Koizumi et al., 1976). Furthermore, their chemical and thermal stability ensures the feasibility of the industrial applications. For this reason some polyphosphates (Naïli et al., 2005; Palkina et al., 1978; Maksimova et al., 1982) were synthesized and investigated in the Cs–Ln–P–O system as an important potential. However, polyphosphates containing europium have not to date been fully explored in the system. Our exploration on the system afforded caesium europium polyphosphate CsEu(PO3)4. We report herein the synthesis and crystal structure of CsEu(PO3)4.

Crystallographic data and structural refinement of CsEu(PO3)4 are summarized in Table 1. The atomic coordinates and thermal parameters are listed in Table 2. Selected bond lengths and angles are given in Table 3.

The structure of crystal CsEu(PO3)4 is shown in Fig. 1. It belongs to the monoclinic space group P21/n, which is isostructural with CsGd(PO3)4 (Naïli et al., 2005). The crystallographically distinct atoms of the asymmetric unit in the structure are one caesium, one europium, four phosphorus, and twelve oxygen atoms. It is described as a three-dimensional framework made up from double PO4 spiral chains and Cs- and Eu-polyhedra. As illustrated in Fig. 2, the double PO4 spiral chains have the same repeating unit (eight PO4 tetrahedra) as single one of CsNd(PO3)4 (Koizumi et al., 1978). These spiral chains are linked by EuO8 and CsO11 polyhedra. In addition, comparing with CsNd(PO3)4, the different characteristics are noted in the coordination environments of the cations. The Eu cation is eight-coordinated with the Eu—O band distances ranging from 2.344 (3) to 2.471 (3) Å. Each EuO8 polyhedron is corner- and face-connected with two and two CsO11 polyhedra, respectively (Fig. 3). The isolation of EuO8 polyhedra gives rise to the large Eu—Eu distances, the shortest of which is 5.7415 (3) Å. The Cs cation is coordinated by eleven oxygen atoms, and the large range of the Cs—O bond distances implies that CsO11 polyhedra are distorted. Neighboring two CsO11 polyhedra are linked by corner-sharing (Fig. 4).

Related literature top

For the structures and properties and applications of condensed alkaline metal–rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal), see: Chinn & Hong (1975); Ettis et al. (2003); Hong (1975); Koizumi (1976); Koizumi & Nakano (1978); Maksimova et al. (1982); Naïli & Mhiri (2005); Otsuka et al. (1977); Palkina et al. (1978); Rekik et al. (2004); Tsujimoto et al. (1977).

Experimental top

The title compound was prepared by the high temperature solution reaction, using analytical reagents Cs2CO3, Eu2O3, and NH4H2PO4 in the molar ratio of Cs/Eu/P = 7:1:12. Starting mixtures were finely ground in an agate mortar to ensure the best homogeneity and reactivity, then placed in a platinum crucible and heated at 373 K for 4 h. Afterwards, the mixtures were reground and heated to 973 K for 24 h. Finally, the temperature was cooled to 773 K at a rate of 2 K/h and air-quenched to room temperature. A few colorless and block-shaped crystals were obtained from the melt of the mixture.

Refinement top

A single-crystal of the compound was selected for X-ray Diffraction determination. The structure was solved using direct methods and refined on F2 by the full-matrix least-squares method with the SHELXL97 program package (Sheldrick, 2008). The position of the Eu atom was refined by the application of the direct method, and the remaining atoms were located in succeeding difference Fourier synthesis. In order to confirm the chemical composition of the the compound, the single-crystal investigated on the diffractometer was analyzed by Energy-dispersive X-ray spectrometry (EDX) using a JSM6700F scanning electron microscope. The obtained result is in good agreement with that obtained by the refinement of the crystal structure. No impurity elements have been detected.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (50% probability) of CsEu(PO3)4.
Caesium europium(III) polyphosphate top
Crystal data top
CsEu(PO3)4F(000) = 1096
Mr = 600.75Dx = 4.002 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2827 reflections
a = 10.3571 (9) Åθ = 2.3–27.5°
b = 8.9615 (5) ŵ = 10.60 mm1
c = 11.1957 (8) ÅT = 293 K
β = 106.354 (3)°Prism, colorless
V = 997.09 (13) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker P4
diffractometer
2284 independent reflections
Radiation source: fine-focus sealed tube2185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1013
Absorption correction: ψ scan
(XSCANS; Bruker, 1996)
k = 1011
Tmin = 0.545, Tmax = 1.000l = 1414
7446 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0273P)2 + 2.176P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.001
S = 1.00Δρmax = 1.16 e Å3
2284 reflectionsΔρmin = 1.17 e Å3
164 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0154 (3)
Crystal data top
CsEu(PO3)4V = 997.09 (13) Å3
Mr = 600.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3571 (9) ŵ = 10.60 mm1
b = 8.9615 (5) ÅT = 293 K
c = 11.1957 (8) Å0.25 × 0.20 × 0.15 mm
β = 106.354 (3)°
Data collection top
Bruker P4
diffractometer
2284 independent reflections
Absorption correction: ψ scan
(XSCANS; Bruker, 1996)
2185 reflections with I > 2σ(I)
Tmin = 0.545, Tmax = 1.000Rint = 0.025
7446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019164 parameters
wR(F2) = 0.0480 restraints
S = 1.00Δρmax = 1.16 e Å3
2284 reflectionsΔρmin = 1.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu0.498050 (16)0.226449 (17)0.180852 (15)0.00580 (8)
Cs0.67980 (2)0.06549 (3)0.45979 (2)0.01775 (9)
P10.45959 (9)0.17482 (9)0.13333 (8)0.00609 (17)
P20.75501 (8)0.02838 (9)0.78552 (8)0.00606 (17)
P30.67259 (9)0.39350 (9)0.47427 (8)0.00652 (17)
P40.64481 (9)0.40738 (9)0.25829 (8)0.00669 (17)
O10.8311 (3)0.0968 (3)0.7052 (2)0.0103 (5)
O20.8623 (2)0.0428 (3)0.9043 (2)0.0084 (5)
O30.6485 (3)0.0823 (3)0.7252 (2)0.0097 (5)
O40.5366 (2)0.0336 (3)0.1654 (2)0.0112 (5)
O50.3125 (3)0.1627 (3)0.0137 (2)0.0122 (5)
O60.5645 (3)0.2902 (3)0.4047 (2)0.0110 (5)
O70.5603 (3)0.2458 (3)0.0102 (2)0.0110 (5)
O80.5213 (2)0.2937 (3)0.2424 (2)0.0097 (5)
O90.6665 (3)0.4514 (3)0.4006 (2)0.0116 (5)
O100.7367 (2)0.1781 (3)0.2529 (2)0.0120 (5)
O110.6003 (3)0.4610 (3)0.1767 (2)0.0115 (5)
O120.6881 (2)0.1588 (3)0.8470 (2)0.0085 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu0.00621 (11)0.00206 (10)0.00886 (11)0.00049 (5)0.00168 (7)0.00068 (5)
Cs0.02071 (15)0.01835 (13)0.01329 (14)0.00425 (9)0.00334 (10)0.00079 (8)
P10.0062 (4)0.0021 (4)0.0096 (4)0.0002 (3)0.0017 (3)0.0003 (3)
P20.0059 (4)0.0031 (4)0.0094 (4)0.0003 (3)0.0026 (3)0.0003 (3)
P30.0070 (4)0.0036 (4)0.0082 (4)0.0000 (3)0.0009 (3)0.0006 (3)
P40.0074 (4)0.0025 (4)0.0094 (4)0.0003 (3)0.0011 (3)0.0006 (3)
O10.0109 (12)0.0084 (11)0.0128 (12)0.0017 (9)0.0056 (10)0.0008 (9)
O20.0074 (11)0.0076 (11)0.0101 (12)0.0008 (9)0.0025 (10)0.0017 (9)
O30.0114 (12)0.0069 (11)0.0104 (12)0.0026 (9)0.0020 (10)0.0032 (9)
O40.0085 (12)0.0052 (11)0.0203 (14)0.0010 (9)0.0048 (10)0.0013 (10)
O50.0105 (13)0.0127 (12)0.0133 (13)0.0055 (10)0.0032 (10)0.0025 (10)
O60.0111 (13)0.0081 (12)0.0127 (13)0.0027 (9)0.0016 (10)0.0037 (9)
O70.0109 (13)0.0108 (11)0.0116 (13)0.0016 (9)0.0035 (10)0.0014 (9)
O80.0092 (12)0.0066 (11)0.0130 (13)0.0032 (9)0.0028 (10)0.0032 (9)
O90.0189 (13)0.0047 (11)0.0104 (12)0.0017 (10)0.0027 (10)0.0002 (9)
O100.0085 (12)0.0084 (12)0.0177 (13)0.0018 (9)0.0015 (10)0.0041 (10)
O110.0165 (13)0.0037 (11)0.0152 (13)0.0027 (9)0.0063 (10)0.0019 (9)
O120.0053 (11)0.0028 (10)0.0171 (13)0.0006 (8)0.0024 (10)0.0022 (9)
Geometric parameters (Å, º) top
Eu—O52.344 (3)P2—O11.485 (2)
Eu—O112.360 (2)P2—O31.495 (3)
Eu—O42.379 (2)P2—O21.605 (3)
Eu—O72.408 (3)P2—O121.609 (2)
Eu—O102.413 (2)P2—Euii3.5752 (9)
Eu—O1i2.416 (2)P3—O5viii1.479 (3)
Eu—O3ii2.445 (2)P3—O61.492 (3)
Eu—O62.471 (3)P3—O2ix1.607 (2)
Eu—P2ii3.5752 (9)P3—O9x1.609 (3)
Eu—P33.5994 (9)P4—O10iv1.481 (3)
Eu—Cs4.1024 (3)P4—O11xi1.484 (3)
Eu—Csiii4.4773 (4)P4—O91.594 (3)
Cs—O33.083 (2)P4—O81.605 (3)
Cs—O11iv3.089 (2)P4—Csiv3.7102 (9)
Cs—O7iv3.093 (3)O1—Euviii2.416 (2)
Cs—O13.114 (3)O2—P3v1.607 (2)
Cs—O43.224 (3)O3—Euii2.445 (2)
Cs—O83.249 (3)O3—Csii3.693 (3)
Cs—O12v3.315 (2)O5—P3i1.479 (3)
Cs—O103.354 (3)O7—P1vi1.479 (3)
Cs—O63.399 (3)O7—Csiii3.093 (3)
Cs—O93.517 (2)O9—P3xi1.609 (3)
Cs—O10iv3.586 (3)O10—P4iii1.481 (3)
Cs—P23.6075 (9)O10—Csiii3.586 (3)
P1—O7vi1.479 (3)O11—P4x1.484 (3)
P1—O41.485 (2)O11—Csiii3.089 (2)
P1—O81.611 (3)O12—P1ii1.612 (2)
P1—O12ii1.612 (2)O12—Csix3.315 (2)
P1—Csvii3.7970 (9)
O5—Eu—O11118.20 (9)O4—Cs—O10iv60.36 (6)
O5—Eu—O479.62 (9)O8—Cs—O10iv42.64 (6)
O11—Eu—O4141.79 (8)O12v—Cs—O10iv79.81 (6)
O5—Eu—O770.90 (9)O10—Cs—O10iv80.580 (8)
O11—Eu—O771.60 (8)O6—Cs—O10iv128.21 (6)
O4—Eu—O785.04 (9)O9—Cs—O10iv41.28 (6)
O5—Eu—O10139.03 (9)O3—Cs—P224.24 (5)
O11—Eu—O1075.15 (9)O11iv—Cs—P2120.18 (5)
O4—Eu—O1070.81 (8)O7iv—Cs—P290.79 (5)
O7—Eu—O1078.72 (9)O1—Cs—P224.12 (4)
O5—Eu—O1i78.33 (9)O4—Cs—P2156.80 (5)
O11—Eu—O1i75.98 (8)O8—Cs—P2145.49 (5)
O4—Eu—O1i142.22 (8)O12v—Cs—P265.31 (5)
O7—Eu—O1i115.59 (9)O10—Cs—P2121.11 (5)
O10—Eu—O1i141.10 (9)O6—Cs—P285.97 (5)
O5—Eu—O3ii75.28 (8)O9—Cs—P2113.94 (4)
O11—Eu—O3ii144.64 (8)O10iv—Cs—P2142.83 (4)
O4—Eu—O3ii69.56 (8)O7vi—P1—O4121.10 (15)
O7—Eu—O3ii140.72 (8)O7vi—P1—O8110.06 (14)
O10—Eu—O3ii117.57 (9)O4—P1—O8108.01 (15)
O1i—Eu—O3ii75.37 (8)O7vi—P1—O12ii106.09 (14)
O5—Eu—O6142.87 (8)O4—P1—O12ii110.89 (13)
O11—Eu—O679.39 (9)O8—P1—O12ii98.32 (13)
O4—Eu—O6107.21 (9)O7vi—P1—Csvii51.19 (10)
O7—Eu—O6144.72 (9)O4—P1—Csvii157.90 (11)
O10—Eu—O674.71 (9)O8—P1—Csvii93.73 (10)
O1i—Eu—O674.81 (9)O12ii—P1—Csvii60.52 (9)
O3ii—Eu—O673.47 (8)O7vi—P1—Cs152.14 (11)
O5—Eu—P2ii57.86 (6)O4—P1—Cs54.51 (10)
O11—Eu—P2ii156.53 (6)O8—P1—Cs56.39 (10)
O4—Eu—P2ii61.64 (6)O12ii—P1—Cs100.29 (10)
O7—Eu—P2ii121.82 (6)Csvii—P1—Cs143.55 (2)
O10—Eu—P2ii124.21 (6)O1—P2—O3116.76 (15)
O1i—Eu—P2ii80.66 (6)O1—P2—O2107.71 (14)
O3ii—Eu—P2ii19.06 (6)O3—P2—O2111.15 (14)
O6—Eu—P2ii92.51 (6)O1—P2—O12108.98 (14)
O5—Eu—P3156.63 (6)O3—P2—O12108.82 (14)
O11—Eu—P362.28 (6)O2—P2—O12102.45 (13)
O4—Eu—P3114.99 (6)O1—P2—Euii149.02 (11)
O7—Eu—P3126.11 (6)O3—P2—Euii32.27 (10)
O10—Eu—P364.27 (6)O2—P2—Euii90.91 (9)
O1i—Eu—P379.40 (6)O12—P2—Euii90.11 (9)
O3ii—Eu—P392.32 (6)O1—P2—Cs58.96 (10)
O6—Eu—P318.85 (6)O3—P2—Cs57.81 (10)
P2ii—Eu—P3111.36 (2)O2—P2—Cs130.28 (9)
O5—Eu—Cs123.34 (6)O12—P2—Cs127.26 (10)
O11—Eu—Cs118.09 (6)Euii—P2—Cs90.08 (2)
O4—Eu—Cs51.71 (6)O5viii—P3—O6118.20 (15)
O7—Eu—Cs122.82 (6)O5viii—P3—O2ix107.64 (14)
O10—Eu—Cs54.82 (6)O6—P3—O2ix110.36 (14)
O1i—Eu—Cs121.45 (6)O5viii—P3—O9x109.94 (14)
O3ii—Eu—Cs62.80 (6)O6—P3—O9x110.66 (15)
O6—Eu—Cs55.84 (6)O2ix—P3—O9x98.14 (13)
P2ii—Eu—Cs72.864 (15)O5viii—P3—Eu109.19 (11)
P3—Eu—Cs64.255 (15)O6—P3—Eu32.35 (10)
O5—Eu—Csiii110.19 (6)O2ix—P3—Eu138.19 (9)
O11—Eu—Csiii40.47 (6)O9x—P3—Eu87.37 (10)
O4—Eu—Csiii103.03 (6)O5viii—P3—Cs69.17 (11)
O7—Eu—Csiii40.98 (6)O6—P3—Cs51.61 (10)
O10—Eu—Csiii52.97 (6)O2ix—P3—Cs113.51 (9)
O1i—Eu—Csiii113.24 (6)O9x—P3—Cs147.29 (10)
O3ii—Eu—Csiii170.28 (6)Eu—P3—Cs63.810 (14)
O6—Eu—Csiii103.77 (6)O10iv—P4—O11xi118.71 (15)
P2ii—Eu—Csiii160.739 (15)O10iv—P4—O9108.98 (15)
P3—Eu—Csiii85.139 (15)O11xi—P4—O9110.52 (14)
Cs—Eu—Csiii107.796 (7)O10iv—P4—O8108.41 (14)
O3—Cs—O11iv140.63 (7)O11xi—P4—O8109.63 (15)
O3—Cs—O7iv96.87 (7)O9—P4—O898.71 (14)
O11iv—Cs—O7iv53.65 (6)O10iv—P4—Csiv64.61 (11)
O3—Cs—O148.36 (6)O11xi—P4—Csiv54.28 (10)
O11iv—Cs—O198.19 (7)O9—P4—Csiv127.28 (10)
O7iv—Cs—O184.17 (7)O8—P4—Csiv133.76 (10)
O3—Cs—O4147.89 (6)O10iv—P4—Cs71.77 (11)
O11iv—Cs—O471.25 (6)O11xi—P4—Cs167.85 (11)
O7iv—Cs—O4111.18 (6)O9—P4—Cs68.87 (9)
O1—Cs—O4146.42 (6)O8—P4—Cs59.27 (10)
O3—Cs—O8121.57 (6)Csiv—P4—Cs136.34 (2)
O11iv—Cs—O888.01 (6)P2—O1—Euviii149.05 (16)
O7iv—Cs—O891.30 (6)P2—O1—Cs96.92 (12)
O1—Cs—O8167.93 (6)Euviii—O1—Cs113.90 (9)
O4—Cs—O845.55 (6)P2—O2—P3v125.03 (15)
O3—Cs—O12v58.05 (6)P2—O3—Euii128.67 (14)
O11iv—Cs—O12v98.84 (6)P2—O3—Cs97.95 (11)
O7iv—Cs—O12v45.19 (6)Euii—O3—Cs133.38 (9)
O1—Cs—O12v76.10 (6)P2—O3—Csii117.46 (12)
O4—Cs—O12v136.03 (6)Euii—O3—Csii81.12 (7)
O8—Cs—O12v92.77 (6)Cs—O3—Csii76.82 (6)
O3—Cs—O10141.66 (6)P1—O4—Eu139.70 (15)
O11iv—Cs—O1046.43 (6)P1—O4—Cs103.46 (12)
O7iv—Cs—O1099.72 (6)Eu—O4—Cs92.90 (8)
O1—Cs—O1099.37 (6)P3i—O5—Eu146.62 (16)
O4—Cs—O1049.90 (6)P3—O6—Eu128.80 (15)
O8—Cs—O1092.42 (6)P3—O6—Cs108.25 (13)
O12v—Cs—O10144.62 (6)Eu—O6—Cs87.17 (7)
O3—Cs—O695.38 (6)P1vi—O7—Eu142.64 (15)
O11iv—Cs—O696.23 (6)P1vi—O7—Csiii106.94 (12)
O7iv—Cs—O6142.10 (6)Eu—O7—Csiii108.31 (9)
O1—Cs—O677.64 (6)P4—O8—P1129.62 (16)
O4—Cs—O672.20 (6)P4—O8—Cs95.59 (11)
O8—Cs—O6112.13 (6)P1—O8—Cs99.22 (11)
O12v—Cs—O6151.27 (6)P4—O9—P3xi134.46 (17)
O10—Cs—O652.07 (6)P4—O9—Cs86.11 (10)
O3—Cs—O997.16 (6)P3xi—O9—Cs139.40 (13)
O11iv—Cs—O988.72 (6)P4iii—O10—Eu149.26 (16)
O7iv—Cs—O958.85 (6)P4iii—O10—Cs91.87 (12)
O1—Cs—O9127.52 (6)Eu—O10—Cs89.14 (7)
O4—Cs—O984.95 (6)P4iii—O10—Csiii85.12 (11)
O8—Cs—O941.82 (6)Eu—O10—Csiii94.52 (8)
O12v—Cs—O951.48 (6)Cs—O10—Csiii176.32 (8)
O10—Cs—O9121.00 (6)P4x—O11—Eu139.40 (15)
O6—Cs—O9153.49 (6)P4x—O11—Csiii102.77 (12)
O3—Cs—O10iv136.01 (6)Eu—O11—Csiii109.80 (8)
O11iv—Cs—O10iv51.06 (6)P2—O12—P1ii131.54 (16)
O7iv—Cs—O10iv53.89 (6)P2—O12—Csix132.22 (12)
O1—Cs—O10iv136.86 (6)P1ii—O12—Csix94.44 (10)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+3/2, y1/2, z+3/2; (vi) x+1, y, z; (vii) x1/2, y1/2, z1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+3/2, y+1/2, z+3/2; (x) x, y+1, z; (xi) x, y1, z.

Experimental details

Crystal data
Chemical formulaCsEu(PO3)4
Mr600.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.3571 (9), 8.9615 (5), 11.1957 (8)
β (°) 106.354 (3)
V3)997.09 (13)
Z4
Radiation typeMo Kα
µ (mm1)10.60
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Bruker, 1996)
Tmin, Tmax0.545, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7446, 2284, 2185
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.00
No. of reflections2284
No. of parameters164
Δρmax, Δρmin (e Å3)1.16, 1.17

Computer programs: XSCANS (Bruker, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

This investigation was based on work supported by the Foundation of Yunnan University (project No. 2007Q013B), the National Natural Science Foundation of China (project No. 20901066) and the Education Science Foundation of Yunnan Province. We thank Dr Qingyan Liu for fruitful discussions concerning the crystal structure.

References

First citationBruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinn, S. R. & Hong, H. Y. P. (1975). Appl. Phys. Lett. 26, 649–651.  CrossRef CAS Web of Science Google Scholar
First citationEttis, H., Naïli, H. & Mhiri, T. (2003). Cryst. Growth Des. 3, 599–602.  Web of Science CrossRef CAS Google Scholar
First citationHong, H. Y. P. (1975). Mater. Res. Bull. 10, 1105–1110.  CrossRef CAS Web of Science Google Scholar
First citationKoizumi, H. (1976). Acta Cryst. B32, 266–268.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKoizumi, H. & Nakano, J. (1978). Acta Cryst. B34, 3320–3323.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMaksimova, S. I., Palkina, K. K., Chibiskova, N. T. & Kuznetsov, V. G. (1982). Izv. Akad. Nauk. SSSR, Neorg. Mater. 18, 653–659.  Google Scholar
First citationNaïli, H. & Mhiri, T. (2005). Acta Cryst. E61, i204–i207.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOtsuka, K., Miyazawa, S., Yamada, T., Iwasaki, H. & Nakano, J. (1977). J. Appl. Phys. 48, 2099–2101.  CrossRef CAS Web of Science Google Scholar
First citationPalkina, K. K., Maksimova, S. I. & Kuznetsov, V. G. (1978). Izv. Akad. Nauk. SSSR, Neorg. Mater. 14, 284–287.  Google Scholar
First citationRekik, W., Naïli, H. & Mhiri, T. (2004). Acta Cryst. C60, i50–i52.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsujimoto, Y., Fukuda, Y. & Fukai, M. (1977). J. Electrochem. Soc. 124, 553–556.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds