inorganic compounds
Caesium europium(III) polyphosphate, CsEu(PO3)4
aDepartment of Materials Science and Engineering, Yunnan University, Kunming, Yunnan 650091, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: jzhu@ynu.edu.cn
Caesium europium polyphosphate, CsEu(PO3)4, was synthesized by a high-temperature solution reaction. Its structure is charaterized by a three-dimensional framework made up of double PO4 spiral chains and EuO8 and CsO11 polyhedra.
Related literature
For the structures, properties and applications of condensed alkaline metal–rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal), see: Chinn & Hong (1975); Ettis et al. (2003); Hong (1975); Koizumi (1976); Koizumi & Nakano (1978); Maksimova et al. (1982); Naïli & Mhiri (2005); Otsuka et al. (1977); Palkina et al. (1978); Rekik et al. (2004); Tsujimoto et al. (1977).
Experimental
Crystal data
|
Data collection: XSCANS (Bruker, 1996); cell XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809036058/bt5050sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809036058/bt5050Isup2.hkl
The title compound was prepared by the high temperature solution reaction, using analytical reagents Cs2CO3, Eu2O3, and NH4H2PO4 in the molar ratio of Cs/Eu/P = 7:1:12. Starting mixtures were finely ground in an agate mortar to ensure the best
and reactivity, then placed in a platinum crucible and heated at 373 K for 4 h. Afterwards, the mixtures were reground and heated to 973 K for 24 h. Finally, the temperature was cooled to 773 K at a rate of 2 K/h and air-quenched to room temperature. A few colorless and block-shaped crystals were obtained from the melt of the mixture.A single-crystal of the compound was selected for X-ray Diffraction determination. The structure was solved using
and refined on F2 by the full-matrix least-squares method with the SHELXL97 program package (Sheldrick, 2008). The position of the Eu atom was refined by the application of the direct method, and the remaining atoms were located in succeeding difference Fourier synthesis. In order to confirm the chemical composition of the the compound, the single-crystal investigated on the diffractometer was analyzed by Energy-dispersive X-ray spectrometry (EDX) using a JSM6700F scanning electron microscope. The obtained result is in good agreement with that obtained by the of the No impurity elements have been detected.Data collection: XSCANS (Bruker, 1996); cell
XSCANS (Bruker, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).CsEu(PO3)4 | F(000) = 1096 |
Mr = 600.75 | Dx = 4.002 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2827 reflections |
a = 10.3571 (9) Å | θ = 2.3–27.5° |
b = 8.9615 (5) Å | µ = 10.60 mm−1 |
c = 11.1957 (8) Å | T = 293 K |
β = 106.354 (3)° | Prism, colorless |
V = 997.09 (13) Å3 | 0.25 × 0.20 × 0.15 mm |
Z = 4 |
Bruker P4 diffractometer | 2284 independent reflections |
Radiation source: fine-focus sealed tube | 2185 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 27.5°, θmin = 2.4° |
ω scans | h = −10→13 |
Absorption correction: ψ scan (XSCANS; Bruker, 1996) | k = −10→11 |
Tmin = 0.545, Tmax = 1.000 | l = −14→14 |
7446 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0273P)2 + 2.176P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.048 | (Δ/σ)max = 0.001 |
S = 1.00 | Δρmax = 1.16 e Å−3 |
2284 reflections | Δρmin = −1.17 e Å−3 |
164 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0154 (3) |
CsEu(PO3)4 | V = 997.09 (13) Å3 |
Mr = 600.75 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.3571 (9) Å | µ = 10.60 mm−1 |
b = 8.9615 (5) Å | T = 293 K |
c = 11.1957 (8) Å | 0.25 × 0.20 × 0.15 mm |
β = 106.354 (3)° |
Bruker P4 diffractometer | 2284 independent reflections |
Absorption correction: ψ scan (XSCANS; Bruker, 1996) | 2185 reflections with I > 2σ(I) |
Tmin = 0.545, Tmax = 1.000 | Rint = 0.025 |
7446 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 164 parameters |
wR(F2) = 0.048 | 0 restraints |
S = 1.00 | Δρmax = 1.16 e Å−3 |
2284 reflections | Δρmin = −1.17 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Eu | 0.498050 (16) | 0.226449 (17) | 0.180852 (15) | 0.00580 (8) | |
Cs | 0.67980 (2) | −0.06549 (3) | 0.45979 (2) | 0.01775 (9) | |
P1 | 0.45959 (9) | −0.17482 (9) | 0.13333 (8) | 0.00609 (17) | |
P2 | 0.75501 (8) | 0.02838 (9) | 0.78552 (8) | 0.00606 (17) | |
P3 | 0.67259 (9) | 0.39350 (9) | 0.47427 (8) | 0.00652 (17) | |
P4 | 0.64481 (9) | −0.40738 (9) | 0.25829 (8) | 0.00669 (17) | |
O1 | 0.8311 (3) | 0.0968 (3) | 0.7052 (2) | 0.0103 (5) | |
O2 | 0.8623 (2) | −0.0428 (3) | 0.9043 (2) | 0.0084 (5) | |
O3 | 0.6485 (3) | −0.0823 (3) | 0.7252 (2) | 0.0097 (5) | |
O4 | 0.5366 (2) | −0.0336 (3) | 0.1654 (2) | 0.0112 (5) | |
O5 | 0.3125 (3) | 0.1627 (3) | 0.0137 (2) | 0.0122 (5) | |
O6 | 0.5645 (3) | 0.2902 (3) | 0.4047 (2) | 0.0110 (5) | |
O7 | 0.5603 (3) | 0.2458 (3) | −0.0102 (2) | 0.0110 (5) | |
O8 | 0.5213 (2) | −0.2937 (3) | 0.2424 (2) | 0.0097 (5) | |
O9 | 0.6665 (3) | −0.4514 (3) | 0.4006 (2) | 0.0116 (5) | |
O10 | 0.7367 (2) | 0.1781 (3) | 0.2529 (2) | 0.0120 (5) | |
O11 | 0.6003 (3) | 0.4610 (3) | 0.1767 (2) | 0.0115 (5) | |
O12 | 0.6881 (2) | 0.1588 (3) | 0.8470 (2) | 0.0085 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu | 0.00621 (11) | 0.00206 (10) | 0.00886 (11) | −0.00049 (5) | 0.00168 (7) | −0.00068 (5) |
Cs | 0.02071 (15) | 0.01835 (13) | 0.01329 (14) | 0.00425 (9) | 0.00334 (10) | −0.00079 (8) |
P1 | 0.0062 (4) | 0.0021 (4) | 0.0096 (4) | 0.0002 (3) | 0.0017 (3) | −0.0003 (3) |
P2 | 0.0059 (4) | 0.0031 (4) | 0.0094 (4) | −0.0003 (3) | 0.0026 (3) | 0.0003 (3) |
P3 | 0.0070 (4) | 0.0036 (4) | 0.0082 (4) | 0.0000 (3) | 0.0009 (3) | 0.0006 (3) |
P4 | 0.0074 (4) | 0.0025 (4) | 0.0094 (4) | 0.0003 (3) | 0.0011 (3) | 0.0006 (3) |
O1 | 0.0109 (12) | 0.0084 (11) | 0.0128 (12) | −0.0017 (9) | 0.0056 (10) | 0.0008 (9) |
O2 | 0.0074 (11) | 0.0076 (11) | 0.0101 (12) | 0.0008 (9) | 0.0025 (10) | 0.0017 (9) |
O3 | 0.0114 (12) | 0.0069 (11) | 0.0104 (12) | −0.0026 (9) | 0.0020 (10) | −0.0032 (9) |
O4 | 0.0085 (12) | 0.0052 (11) | 0.0203 (14) | −0.0010 (9) | 0.0048 (10) | −0.0013 (10) |
O5 | 0.0105 (13) | 0.0127 (12) | 0.0133 (13) | −0.0055 (10) | 0.0032 (10) | −0.0025 (10) |
O6 | 0.0111 (13) | 0.0081 (12) | 0.0127 (13) | −0.0027 (9) | 0.0016 (10) | −0.0037 (9) |
O7 | 0.0109 (13) | 0.0108 (11) | 0.0116 (13) | −0.0016 (9) | 0.0035 (10) | −0.0014 (9) |
O8 | 0.0092 (12) | 0.0066 (11) | 0.0130 (13) | 0.0032 (9) | 0.0028 (10) | 0.0032 (9) |
O9 | 0.0189 (13) | 0.0047 (11) | 0.0104 (12) | −0.0017 (10) | 0.0027 (10) | −0.0002 (9) |
O10 | 0.0085 (12) | 0.0084 (12) | 0.0177 (13) | 0.0018 (9) | 0.0015 (10) | −0.0041 (10) |
O11 | 0.0165 (13) | 0.0037 (11) | 0.0152 (13) | −0.0027 (9) | 0.0063 (10) | −0.0019 (9) |
O12 | 0.0053 (11) | 0.0028 (10) | 0.0171 (13) | −0.0006 (8) | 0.0024 (10) | −0.0022 (9) |
Eu—O5 | 2.344 (3) | P2—O1 | 1.485 (2) |
Eu—O11 | 2.360 (2) | P2—O3 | 1.495 (3) |
Eu—O4 | 2.379 (2) | P2—O2 | 1.605 (3) |
Eu—O7 | 2.408 (3) | P2—O12 | 1.609 (2) |
Eu—O10 | 2.413 (2) | P2—Euii | 3.5752 (9) |
Eu—O1i | 2.416 (2) | P3—O5viii | 1.479 (3) |
Eu—O3ii | 2.445 (2) | P3—O6 | 1.492 (3) |
Eu—O6 | 2.471 (3) | P3—O2ix | 1.607 (2) |
Eu—P2ii | 3.5752 (9) | P3—O9x | 1.609 (3) |
Eu—P3 | 3.5994 (9) | P4—O10iv | 1.481 (3) |
Eu—Cs | 4.1024 (3) | P4—O11xi | 1.484 (3) |
Eu—Csiii | 4.4773 (4) | P4—O9 | 1.594 (3) |
Cs—O3 | 3.083 (2) | P4—O8 | 1.605 (3) |
Cs—O11iv | 3.089 (2) | P4—Csiv | 3.7102 (9) |
Cs—O7iv | 3.093 (3) | O1—Euviii | 2.416 (2) |
Cs—O1 | 3.114 (3) | O2—P3v | 1.607 (2) |
Cs—O4 | 3.224 (3) | O3—Euii | 2.445 (2) |
Cs—O8 | 3.249 (3) | O3—Csii | 3.693 (3) |
Cs—O12v | 3.315 (2) | O5—P3i | 1.479 (3) |
Cs—O10 | 3.354 (3) | O7—P1vi | 1.479 (3) |
Cs—O6 | 3.399 (3) | O7—Csiii | 3.093 (3) |
Cs—O9 | 3.517 (2) | O9—P3xi | 1.609 (3) |
Cs—O10iv | 3.586 (3) | O10—P4iii | 1.481 (3) |
Cs—P2 | 3.6075 (9) | O10—Csiii | 3.586 (3) |
P1—O7vi | 1.479 (3) | O11—P4x | 1.484 (3) |
P1—O4 | 1.485 (2) | O11—Csiii | 3.089 (2) |
P1—O8 | 1.611 (3) | O12—P1ii | 1.612 (2) |
P1—O12ii | 1.612 (2) | O12—Csix | 3.315 (2) |
P1—Csvii | 3.7970 (9) | ||
O5—Eu—O11 | 118.20 (9) | O4—Cs—O10iv | 60.36 (6) |
O5—Eu—O4 | 79.62 (9) | O8—Cs—O10iv | 42.64 (6) |
O11—Eu—O4 | 141.79 (8) | O12v—Cs—O10iv | 79.81 (6) |
O5—Eu—O7 | 70.90 (9) | O10—Cs—O10iv | 80.580 (8) |
O11—Eu—O7 | 71.60 (8) | O6—Cs—O10iv | 128.21 (6) |
O4—Eu—O7 | 85.04 (9) | O9—Cs—O10iv | 41.28 (6) |
O5—Eu—O10 | 139.03 (9) | O3—Cs—P2 | 24.24 (5) |
O11—Eu—O10 | 75.15 (9) | O11iv—Cs—P2 | 120.18 (5) |
O4—Eu—O10 | 70.81 (8) | O7iv—Cs—P2 | 90.79 (5) |
O7—Eu—O10 | 78.72 (9) | O1—Cs—P2 | 24.12 (4) |
O5—Eu—O1i | 78.33 (9) | O4—Cs—P2 | 156.80 (5) |
O11—Eu—O1i | 75.98 (8) | O8—Cs—P2 | 145.49 (5) |
O4—Eu—O1i | 142.22 (8) | O12v—Cs—P2 | 65.31 (5) |
O7—Eu—O1i | 115.59 (9) | O10—Cs—P2 | 121.11 (5) |
O10—Eu—O1i | 141.10 (9) | O6—Cs—P2 | 85.97 (5) |
O5—Eu—O3ii | 75.28 (8) | O9—Cs—P2 | 113.94 (4) |
O11—Eu—O3ii | 144.64 (8) | O10iv—Cs—P2 | 142.83 (4) |
O4—Eu—O3ii | 69.56 (8) | O7vi—P1—O4 | 121.10 (15) |
O7—Eu—O3ii | 140.72 (8) | O7vi—P1—O8 | 110.06 (14) |
O10—Eu—O3ii | 117.57 (9) | O4—P1—O8 | 108.01 (15) |
O1i—Eu—O3ii | 75.37 (8) | O7vi—P1—O12ii | 106.09 (14) |
O5—Eu—O6 | 142.87 (8) | O4—P1—O12ii | 110.89 (13) |
O11—Eu—O6 | 79.39 (9) | O8—P1—O12ii | 98.32 (13) |
O4—Eu—O6 | 107.21 (9) | O7vi—P1—Csvii | 51.19 (10) |
O7—Eu—O6 | 144.72 (9) | O4—P1—Csvii | 157.90 (11) |
O10—Eu—O6 | 74.71 (9) | O8—P1—Csvii | 93.73 (10) |
O1i—Eu—O6 | 74.81 (9) | O12ii—P1—Csvii | 60.52 (9) |
O3ii—Eu—O6 | 73.47 (8) | O7vi—P1—Cs | 152.14 (11) |
O5—Eu—P2ii | 57.86 (6) | O4—P1—Cs | 54.51 (10) |
O11—Eu—P2ii | 156.53 (6) | O8—P1—Cs | 56.39 (10) |
O4—Eu—P2ii | 61.64 (6) | O12ii—P1—Cs | 100.29 (10) |
O7—Eu—P2ii | 121.82 (6) | Csvii—P1—Cs | 143.55 (2) |
O10—Eu—P2ii | 124.21 (6) | O1—P2—O3 | 116.76 (15) |
O1i—Eu—P2ii | 80.66 (6) | O1—P2—O2 | 107.71 (14) |
O3ii—Eu—P2ii | 19.06 (6) | O3—P2—O2 | 111.15 (14) |
O6—Eu—P2ii | 92.51 (6) | O1—P2—O12 | 108.98 (14) |
O5—Eu—P3 | 156.63 (6) | O3—P2—O12 | 108.82 (14) |
O11—Eu—P3 | 62.28 (6) | O2—P2—O12 | 102.45 (13) |
O4—Eu—P3 | 114.99 (6) | O1—P2—Euii | 149.02 (11) |
O7—Eu—P3 | 126.11 (6) | O3—P2—Euii | 32.27 (10) |
O10—Eu—P3 | 64.27 (6) | O2—P2—Euii | 90.91 (9) |
O1i—Eu—P3 | 79.40 (6) | O12—P2—Euii | 90.11 (9) |
O3ii—Eu—P3 | 92.32 (6) | O1—P2—Cs | 58.96 (10) |
O6—Eu—P3 | 18.85 (6) | O3—P2—Cs | 57.81 (10) |
P2ii—Eu—P3 | 111.36 (2) | O2—P2—Cs | 130.28 (9) |
O5—Eu—Cs | 123.34 (6) | O12—P2—Cs | 127.26 (10) |
O11—Eu—Cs | 118.09 (6) | Euii—P2—Cs | 90.08 (2) |
O4—Eu—Cs | 51.71 (6) | O5viii—P3—O6 | 118.20 (15) |
O7—Eu—Cs | 122.82 (6) | O5viii—P3—O2ix | 107.64 (14) |
O10—Eu—Cs | 54.82 (6) | O6—P3—O2ix | 110.36 (14) |
O1i—Eu—Cs | 121.45 (6) | O5viii—P3—O9x | 109.94 (14) |
O3ii—Eu—Cs | 62.80 (6) | O6—P3—O9x | 110.66 (15) |
O6—Eu—Cs | 55.84 (6) | O2ix—P3—O9x | 98.14 (13) |
P2ii—Eu—Cs | 72.864 (15) | O5viii—P3—Eu | 109.19 (11) |
P3—Eu—Cs | 64.255 (15) | O6—P3—Eu | 32.35 (10) |
O5—Eu—Csiii | 110.19 (6) | O2ix—P3—Eu | 138.19 (9) |
O11—Eu—Csiii | 40.47 (6) | O9x—P3—Eu | 87.37 (10) |
O4—Eu—Csiii | 103.03 (6) | O5viii—P3—Cs | 69.17 (11) |
O7—Eu—Csiii | 40.98 (6) | O6—P3—Cs | 51.61 (10) |
O10—Eu—Csiii | 52.97 (6) | O2ix—P3—Cs | 113.51 (9) |
O1i—Eu—Csiii | 113.24 (6) | O9x—P3—Cs | 147.29 (10) |
O3ii—Eu—Csiii | 170.28 (6) | Eu—P3—Cs | 63.810 (14) |
O6—Eu—Csiii | 103.77 (6) | O10iv—P4—O11xi | 118.71 (15) |
P2ii—Eu—Csiii | 160.739 (15) | O10iv—P4—O9 | 108.98 (15) |
P3—Eu—Csiii | 85.139 (15) | O11xi—P4—O9 | 110.52 (14) |
Cs—Eu—Csiii | 107.796 (7) | O10iv—P4—O8 | 108.41 (14) |
O3—Cs—O11iv | 140.63 (7) | O11xi—P4—O8 | 109.63 (15) |
O3—Cs—O7iv | 96.87 (7) | O9—P4—O8 | 98.71 (14) |
O11iv—Cs—O7iv | 53.65 (6) | O10iv—P4—Csiv | 64.61 (11) |
O3—Cs—O1 | 48.36 (6) | O11xi—P4—Csiv | 54.28 (10) |
O11iv—Cs—O1 | 98.19 (7) | O9—P4—Csiv | 127.28 (10) |
O7iv—Cs—O1 | 84.17 (7) | O8—P4—Csiv | 133.76 (10) |
O3—Cs—O4 | 147.89 (6) | O10iv—P4—Cs | 71.77 (11) |
O11iv—Cs—O4 | 71.25 (6) | O11xi—P4—Cs | 167.85 (11) |
O7iv—Cs—O4 | 111.18 (6) | O9—P4—Cs | 68.87 (9) |
O1—Cs—O4 | 146.42 (6) | O8—P4—Cs | 59.27 (10) |
O3—Cs—O8 | 121.57 (6) | Csiv—P4—Cs | 136.34 (2) |
O11iv—Cs—O8 | 88.01 (6) | P2—O1—Euviii | 149.05 (16) |
O7iv—Cs—O8 | 91.30 (6) | P2—O1—Cs | 96.92 (12) |
O1—Cs—O8 | 167.93 (6) | Euviii—O1—Cs | 113.90 (9) |
O4—Cs—O8 | 45.55 (6) | P2—O2—P3v | 125.03 (15) |
O3—Cs—O12v | 58.05 (6) | P2—O3—Euii | 128.67 (14) |
O11iv—Cs—O12v | 98.84 (6) | P2—O3—Cs | 97.95 (11) |
O7iv—Cs—O12v | 45.19 (6) | Euii—O3—Cs | 133.38 (9) |
O1—Cs—O12v | 76.10 (6) | P2—O3—Csii | 117.46 (12) |
O4—Cs—O12v | 136.03 (6) | Euii—O3—Csii | 81.12 (7) |
O8—Cs—O12v | 92.77 (6) | Cs—O3—Csii | 76.82 (6) |
O3—Cs—O10 | 141.66 (6) | P1—O4—Eu | 139.70 (15) |
O11iv—Cs—O10 | 46.43 (6) | P1—O4—Cs | 103.46 (12) |
O7iv—Cs—O10 | 99.72 (6) | Eu—O4—Cs | 92.90 (8) |
O1—Cs—O10 | 99.37 (6) | P3i—O5—Eu | 146.62 (16) |
O4—Cs—O10 | 49.90 (6) | P3—O6—Eu | 128.80 (15) |
O8—Cs—O10 | 92.42 (6) | P3—O6—Cs | 108.25 (13) |
O12v—Cs—O10 | 144.62 (6) | Eu—O6—Cs | 87.17 (7) |
O3—Cs—O6 | 95.38 (6) | P1vi—O7—Eu | 142.64 (15) |
O11iv—Cs—O6 | 96.23 (6) | P1vi—O7—Csiii | 106.94 (12) |
O7iv—Cs—O6 | 142.10 (6) | Eu—O7—Csiii | 108.31 (9) |
O1—Cs—O6 | 77.64 (6) | P4—O8—P1 | 129.62 (16) |
O4—Cs—O6 | 72.20 (6) | P4—O8—Cs | 95.59 (11) |
O8—Cs—O6 | 112.13 (6) | P1—O8—Cs | 99.22 (11) |
O12v—Cs—O6 | 151.27 (6) | P4—O9—P3xi | 134.46 (17) |
O10—Cs—O6 | 52.07 (6) | P4—O9—Cs | 86.11 (10) |
O3—Cs—O9 | 97.16 (6) | P3xi—O9—Cs | 139.40 (13) |
O11iv—Cs—O9 | 88.72 (6) | P4iii—O10—Eu | 149.26 (16) |
O7iv—Cs—O9 | 58.85 (6) | P4iii—O10—Cs | 91.87 (12) |
O1—Cs—O9 | 127.52 (6) | Eu—O10—Cs | 89.14 (7) |
O4—Cs—O9 | 84.95 (6) | P4iii—O10—Csiii | 85.12 (11) |
O8—Cs—O9 | 41.82 (6) | Eu—O10—Csiii | 94.52 (8) |
O12v—Cs—O9 | 51.48 (6) | Cs—O10—Csiii | 176.32 (8) |
O10—Cs—O9 | 121.00 (6) | P4x—O11—Eu | 139.40 (15) |
O6—Cs—O9 | 153.49 (6) | P4x—O11—Csiii | 102.77 (12) |
O3—Cs—O10iv | 136.01 (6) | Eu—O11—Csiii | 109.80 (8) |
O11iv—Cs—O10iv | 51.06 (6) | P2—O12—P1ii | 131.54 (16) |
O7iv—Cs—O10iv | 53.89 (6) | P2—O12—Csix | 132.22 (12) |
O1—Cs—O10iv | 136.86 (6) | P1ii—O12—Csix | 94.44 (10) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+3/2, y−1/2, −z+1/2; (v) −x+3/2, y−1/2, −z+3/2; (vi) −x+1, −y, −z; (vii) x−1/2, −y−1/2, z−1/2; (viii) x+1/2, −y+1/2, z+1/2; (ix) −x+3/2, y+1/2, −z+3/2; (x) x, y+1, z; (xi) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | CsEu(PO3)4 |
Mr | 600.75 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 10.3571 (9), 8.9615 (5), 11.1957 (8) |
β (°) | 106.354 (3) |
V (Å3) | 997.09 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 10.60 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | ψ scan (XSCANS; Bruker, 1996) |
Tmin, Tmax | 0.545, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7446, 2284, 2185 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.048, 1.00 |
No. of reflections | 2284 |
No. of parameters | 164 |
Δρmax, Δρmin (e Å−3) | 1.16, −1.17 |
Computer programs: XSCANS (Bruker, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).
Acknowledgements
This investigation was based on work supported by the Foundation of Yunnan University (project No. 2007Q013B), the National Natural Science Foundation of China (project No. 20901066) and the Education Science Foundation of Yunnan Province. We thank Dr Qingyan Liu for fruitful discussions concerning the crystal structure.
References
Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chinn, S. R. & Hong, H. Y. P. (1975). Appl. Phys. Lett. 26, 649–651. CrossRef CAS Web of Science Google Scholar
Ettis, H., Naïli, H. & Mhiri, T. (2003). Cryst. Growth Des. 3, 599–602. Web of Science CrossRef CAS Google Scholar
Hong, H. Y. P. (1975). Mater. Res. Bull. 10, 1105–1110. CrossRef CAS Web of Science Google Scholar
Koizumi, H. (1976). Acta Cryst. B32, 266–268. CrossRef CAS IUCr Journals Web of Science Google Scholar
Koizumi, H. & Nakano, J. (1978). Acta Cryst. B34, 3320–3323. CrossRef CAS IUCr Journals Web of Science Google Scholar
Maksimova, S. I., Palkina, K. K., Chibiskova, N. T. & Kuznetsov, V. G. (1982). Izv. Akad. Nauk. SSSR, Neorg. Mater. 18, 653–659. Google Scholar
Naïli, H. & Mhiri, T. (2005). Acta Cryst. E61, i204–i207. Web of Science CrossRef IUCr Journals Google Scholar
Otsuka, K., Miyazawa, S., Yamada, T., Iwasaki, H. & Nakano, J. (1977). J. Appl. Phys. 48, 2099–2101. CrossRef CAS Web of Science Google Scholar
Palkina, K. K., Maksimova, S. I. & Kuznetsov, V. G. (1978). Izv. Akad. Nauk. SSSR, Neorg. Mater. 14, 284–287. Google Scholar
Rekik, W., Naïli, H. & Mhiri, T. (2004). Acta Cryst. C60, i50–i52. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsujimoto, Y., Fukuda, Y. & Fukai, M. (1977). J. Electrochem. Soc. 124, 553–556. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Condensed alkaline metal-rare earth polyphosphates with the general formula MLn(PO3)4 (M = alkali metal, Ln = rare earth metal) possess various structures (Ettis et al., 2003; Rekik et al., 2004) and desirable optical properties (Chinn et al., 1975; Otsuka et al., 1977; Tsujimoto et al., 1977; Hong et al., 1975; Koizumi et al., 1976). Furthermore, their chemical and thermal stability ensures the feasibility of the industrial applications. For this reason some polyphosphates (Naïli et al., 2005; Palkina et al., 1978; Maksimova et al., 1982) were synthesized and investigated in the Cs–Ln–P–O system as an important potential. However, polyphosphates containing europium have not to date been fully explored in the system. Our exploration on the system afforded caesium europium polyphosphate CsEu(PO3)4. We report herein the synthesis and crystal structure of CsEu(PO3)4.
Crystallographic data and structural refinement of CsEu(PO3)4 are summarized in Table 1. The atomic coordinates and thermal parameters are listed in Table 2. Selected bond lengths and angles are given in Table 3.
The structure of crystal CsEu(PO3)4 is shown in Fig. 1. It belongs to the monoclinic space group P21/n, which is isostructural with CsGd(PO3)4 (Naïli et al., 2005). The crystallographically distinct atoms of the asymmetric unit in the structure are one caesium, one europium, four phosphorus, and twelve oxygen atoms. It is described as a three-dimensional framework made up from double PO4 spiral chains and Cs- and Eu-polyhedra. As illustrated in Fig. 2, the double PO4 spiral chains have the same repeating unit (eight PO4 tetrahedra) as single one of CsNd(PO3)4 (Koizumi et al., 1978). These spiral chains are linked by EuO8 and CsO11 polyhedra. In addition, comparing with CsNd(PO3)4, the different characteristics are noted in the coordination environments of the cations. The Eu cation is eight-coordinated with the Eu—O band distances ranging from 2.344 (3) to 2.471 (3) Å. Each EuO8 polyhedron is corner- and face-connected with two and two CsO11 polyhedra, respectively (Fig. 3). The isolation of EuO8 polyhedra gives rise to the large Eu—Eu distances, the shortest of which is 5.7415 (3) Å. The Cs cation is coordinated by eleven oxygen atoms, and the large range of the Cs—O bond distances implies that CsO11 polyhedra are distorted. Neighboring two CsO11 polyhedra are linked by corner-sharing (Fig. 4).