organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­methyl-5-(2-methyl­benzyl­­idene)pyrimidine-2,4,6(1H,3H,5H)-trione

aCentre for Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 2 September 2009; accepted 2 September 2009; online 9 September 2009)

In the title compound, C14H14N2O3, the dihedral angle between the pyrimidine and benzene rings is 14.9 (1)°. The mol­ecular structure is stabilized by weak intra­molecular C—H⋯O inter­actions and the crystal structure exhibits a weak inter­molecular ππ inter­action [centroid–centroid distance = 3.575 (3) Å].

Related literature

For the biological activity of pyrimidine derivatives, see: Cody et al. (1997[Cody, V., Galitsky, N., Luft, J. R., Pangborn, W., Gangjee, A., Devraj, R., Queener, S. F. & Blakley, R. L. (1997). Acta Cryst. D53, 638-649.]); Li et al. (1995[Li, J. J., Anderson, D., Burton, E. G. & Cogburn, J. N. (1995). J. Med. Chem. 38, 4570-4578.]). For related structures, see: Da Silva et al. (2005[Silva, E. T. da, Ribiero, R. S., Lima, E. L. S., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o15-o20.]); Rezende et al. (2005[Rezende, M. C., Dominguez, M., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o306-o311.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O3

  • Mr = 258.27

  • Monoclinic, P 21 /n

  • a = 8.182 (5) Å

  • b = 8.334 (4) Å

  • c = 18.202 (5) Å

  • β = 94.267 (5)°

  • V = 1237.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.30 × 0.28 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.982

  • 16198 measured reflections

  • 3837 independent reflections

  • 2517 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.238

  • S = 1.04

  • 3837 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.93 2.26 2.893 (3) 125

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrimidine derivatives show biological activities such as antitumor, antibacterial, insulin releasing and anti-inflammatory activities (Cody et al., 1997; Li et al., 1995). The geometric parameters in (I) (Fig. 1) agree with the reported values of similar structures (Da Silva et al., 2005; Rezende et al., 2005).

The dihedral angle between the pyrimidine ring (N1/C11/N2/C10/C9/C12) and benzene ring (C1—C6) is 14.9 (1)°. The molecular structure is stabilized by weak intramolecular C—H···O interactions. The crystal structure exhibits an intermolecular weak ππ interaction[Cg1···Cg2 = 3.575 (3) Å; symmetry code: -x, -y, 1 - z; Cg1 and Cg2 are the centroids of N1/C11/N2/C10/C9/C12 and C1—C6 rings, respectively].

The intramolecular C8—H8···O1 and C13—H13B···O3 interactions generate five-membered rings, each with graph-set motif S(5) and C2—H2···O2 interaction generates a seven-membered ring, with graph-set motif S(7) (Bernstein et al., 1995).

Related literature top

For related literature, see: Bernstein et al. (1995); Cody et al. (1997); Da Silva et al. (2005); Li et al. (1995); Rezende et al. (2005).

Experimental top

To a solution of o-tolualdehyde (4.0 g, 33.29 mmol) in dry benzene (80 ml), N,N-dimethylbarbituric acid (5.72 g, 36.63 mmol), piperidine (0.6 ml) and acetic acid (0.3 ml) were added and refluxed in a RB flask fitted with Dean-Stark apparatus for 12 h. Removal of solvent followed by recrystallizaton from CDCl3 afforded the compound.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for C—H and C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
1,3-Dimethyl-5-(2-methylbenzylidene)pyrimidine- 2,4,6(1H,3H,5H)-trione top
Crystal data top
C14H14N2O3F(000) = 544
Mr = 258.27Dx = 1.386 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6022 reflections
a = 8.182 (5) Åθ = 2.2–29.8°
b = 8.334 (4) ŵ = 0.10 mm1
c = 18.202 (5) ÅT = 295 K
β = 94.267 (5)°Block, colourless
V = 1237.7 (10) Å30.30 × 0.28 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3837 independent reflections
Radiation source: fine-focus sealed tube2517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 30.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.971, Tmax = 0.982k = 811
16198 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1214P)2 + 0.5641P]
where P = (Fo2 + 2Fc2)/3
3837 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C14H14N2O3V = 1237.7 (10) Å3
Mr = 258.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.182 (5) ŵ = 0.10 mm1
b = 8.334 (4) ÅT = 295 K
c = 18.202 (5) Å0.30 × 0.28 × 0.18 mm
β = 94.267 (5)°
Data collection top
Bruker Kappa APEXII
diffractometer
3837 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2517 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.982Rint = 0.024
16198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.238H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
3837 reflectionsΔρmin = 0.34 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0138 (2)0.2553 (2)0.49118 (10)0.0391 (4)
C20.1183 (3)0.2104 (3)0.44177 (12)0.0547 (6)
H20.19740.14060.45730.066*
C30.1326 (3)0.2681 (4)0.37060 (12)0.0589 (6)
H30.22050.23700.33840.071*
C40.0168 (3)0.3713 (3)0.34746 (12)0.0548 (6)
H40.02850.41470.30030.066*
C50.1166 (3)0.4106 (3)0.39422 (12)0.0519 (5)
H50.19610.47850.37750.062*
C60.1363 (2)0.3521 (3)0.46527 (11)0.0424 (5)
C70.2861 (3)0.4007 (4)0.51198 (15)0.0714 (8)
H7A0.35860.31050.51880.107*
H7B0.25520.43700.55900.107*
H7C0.34080.48590.48810.107*
C80.0343 (3)0.2024 (3)0.56714 (11)0.0447 (5)
H80.14120.21610.58730.054*
C90.0641 (2)0.1379 (2)0.61602 (10)0.0390 (4)
C100.0217 (3)0.0920 (3)0.68754 (10)0.0429 (5)
C110.2160 (2)0.0676 (2)0.71455 (10)0.0396 (4)
C120.2395 (3)0.1068 (3)0.60570 (11)0.0449 (5)
C130.0281 (3)0.0647 (3)0.79980 (12)0.0584 (6)
H13A0.12470.12230.78850.088*
H13B0.04160.13400.82570.088*
H13C0.05890.02630.83000.088*
C140.4706 (3)0.0581 (4)0.63701 (16)0.0715 (8)
H14A0.48220.16750.65240.107*
H14B0.50040.04960.58510.107*
H14C0.54090.00930.66360.107*
N10.3007 (2)0.0073 (2)0.65217 (9)0.0433 (4)
N20.0600 (2)0.0100 (2)0.73120 (8)0.0397 (4)
O10.1595 (2)0.1369 (3)0.70726 (9)0.0682 (6)
O20.3317 (2)0.1744 (3)0.56044 (11)0.0748 (6)
O30.2774 (2)0.1642 (2)0.75393 (10)0.0587 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (9)0.0465 (10)0.0326 (8)0.0012 (8)0.0033 (7)0.0046 (7)
C20.0453 (11)0.0775 (16)0.0407 (10)0.0112 (11)0.0004 (9)0.0047 (11)
C30.0505 (12)0.0883 (18)0.0367 (10)0.0003 (12)0.0041 (9)0.0010 (11)
C40.0654 (14)0.0672 (15)0.0323 (9)0.0100 (11)0.0064 (9)0.0082 (9)
C50.0614 (13)0.0556 (13)0.0403 (10)0.0084 (10)0.0144 (9)0.0035 (9)
C60.0407 (10)0.0498 (11)0.0371 (9)0.0012 (8)0.0061 (7)0.0031 (8)
C70.0539 (14)0.104 (2)0.0549 (14)0.0309 (15)0.0017 (11)0.0038 (14)
C80.0417 (10)0.0534 (12)0.0382 (9)0.0060 (9)0.0016 (8)0.0071 (9)
C90.0413 (10)0.0433 (10)0.0320 (8)0.0013 (8)0.0009 (7)0.0049 (7)
C100.0415 (10)0.0535 (11)0.0330 (9)0.0047 (9)0.0017 (7)0.0061 (8)
C110.0460 (10)0.0390 (10)0.0350 (9)0.0009 (8)0.0100 (7)0.0014 (7)
C120.0391 (10)0.0608 (13)0.0345 (9)0.0025 (9)0.0008 (7)0.0053 (9)
C130.0598 (14)0.0761 (16)0.0384 (10)0.0067 (12)0.0022 (9)0.0186 (11)
C140.0449 (13)0.108 (2)0.0611 (15)0.0255 (14)0.0006 (11)0.0008 (15)
N10.0378 (8)0.0532 (10)0.0387 (8)0.0071 (7)0.0025 (6)0.0027 (7)
N20.0408 (8)0.0466 (9)0.0315 (7)0.0021 (7)0.0020 (6)0.0070 (6)
O10.0512 (9)0.1035 (15)0.0473 (9)0.0257 (9)0.0139 (7)0.0199 (9)
O20.0443 (9)0.1221 (17)0.0570 (10)0.0125 (10)0.0022 (8)0.0328 (11)
O30.0673 (11)0.0574 (10)0.0536 (9)0.0123 (8)0.0186 (8)0.0089 (7)
Geometric parameters (Å, º) top
C1—C61.396 (3)C9—C121.457 (3)
C1—C21.404 (3)C9—C101.482 (3)
C1—C81.449 (3)C10—O11.217 (3)
C2—C31.379 (3)C10—N21.371 (3)
C2—H20.9300C11—O31.212 (2)
C3—C41.369 (4)C11—N21.376 (3)
C3—H30.9300C11—N11.380 (3)
C4—C51.373 (4)C12—O21.214 (3)
C4—H40.9300C12—N11.391 (3)
C5—C61.380 (3)C13—N21.467 (3)
C5—H50.9300C13—H13A0.9600
C6—C71.495 (3)C13—H13B0.9600
C7—H7A0.9600C13—H13C0.9600
C7—H7B0.9600C14—N11.460 (3)
C7—H7C0.9600C14—H14A0.9600
C8—C91.355 (3)C14—H14B0.9600
C8—H80.9300C14—H14C0.9600
C6—C1—C2118.38 (18)C12—C9—C10117.69 (17)
C6—C1—C8117.61 (18)O1—C10—N2120.04 (18)
C2—C1—C8123.97 (19)O1—C10—C9123.19 (19)
C3—C2—C1121.1 (2)N2—C10—C9116.74 (18)
C3—C2—H2119.5O3—C11—N2121.34 (19)
C1—C2—H2119.5O3—C11—N1121.6 (2)
C4—C3—C2119.7 (2)N2—C11—N1117.08 (17)
C4—C3—H3120.1O2—C12—N1119.8 (2)
C2—C3—H3120.1O2—C12—C9124.2 (2)
C3—C4—C5119.7 (2)N1—C12—C9116.06 (17)
C3—C4—H4120.1N2—C13—H13A109.5
C5—C4—H4120.1N2—C13—H13B109.5
C4—C5—C6121.9 (2)H13A—C13—H13B109.5
C4—C5—H5119.0N2—C13—H13C109.5
C6—C5—H5119.0H13A—C13—H13C109.5
C5—C6—C1118.95 (19)H13B—C13—H13C109.5
C5—C6—C7118.1 (2)N1—C14—H14A109.5
C1—C6—C7122.9 (2)N1—C14—H14B109.5
C6—C7—H7A109.5H14A—C14—H14B109.5
C6—C7—H7B109.5N1—C14—H14C109.5
H7A—C7—H7B109.5H14A—C14—H14C109.5
C6—C7—H7C109.5H14B—C14—H14C109.5
H7A—C7—H7C109.5C11—N1—C12124.58 (17)
H7B—C7—H7C109.5C11—N1—C14117.58 (19)
C9—C8—C1135.66 (19)C12—N1—C14117.7 (2)
C9—C8—H8112.2C10—N2—C11124.92 (16)
C1—C8—H8112.2C10—N2—C13117.15 (18)
C8—C9—C12127.86 (18)C11—N2—C13117.91 (18)
C8—C9—C10114.43 (18)
C6—C1—C2—C34.0 (4)C10—C9—C12—O2159.2 (2)
C8—C1—C2—C3178.4 (2)C8—C9—C12—N1158.5 (2)
C1—C2—C3—C40.2 (4)C10—C9—C12—N120.2 (3)
C2—C3—C4—C53.1 (4)O3—C11—N1—C12178.2 (2)
C3—C4—C5—C61.7 (4)N2—C11—N1—C120.2 (3)
C4—C5—C6—C12.5 (4)O3—C11—N1—C142.9 (3)
C4—C5—C6—C7179.6 (3)N2—C11—N1—C14175.4 (2)
C2—C1—C6—C55.2 (3)O2—C12—N1—C11166.3 (2)
C8—C1—C6—C5177.0 (2)C9—C12—N1—C1113.1 (3)
C2—C1—C6—C7177.0 (3)O2—C12—N1—C148.9 (4)
C8—C1—C6—C70.7 (3)C9—C12—N1—C14171.7 (2)
C6—C1—C8—C9164.5 (3)O1—C10—N2—C11179.7 (2)
C2—C1—C8—C917.9 (4)C9—C10—N2—C112.3 (3)
C1—C8—C9—C123.4 (4)O1—C10—N2—C132.0 (3)
C1—C8—C9—C10175.4 (2)C9—C10—N2—C13176.01 (19)
C8—C9—C10—O114.5 (3)O3—C11—N2—C10176.1 (2)
C12—C9—C10—O1166.7 (2)N1—C11—N2—C105.6 (3)
C8—C9—C10—N2163.5 (2)O3—C11—N2—C132.2 (3)
C12—C9—C10—N215.4 (3)N1—C11—N2—C13176.12 (18)
C8—C9—C12—O222.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.262.893 (3)125
C8—H8···O10.932.282.732 (3)110
C13—H13B···O30.962.262.706 (4)107

Experimental details

Crystal data
Chemical formulaC14H14N2O3
Mr258.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)8.182 (5), 8.334 (4), 18.202 (5)
β (°) 94.267 (5)
V3)1237.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.28 × 0.18
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
16198, 3837, 2517
Rint0.024
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.238, 1.04
No. of reflections3837
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.262.893 (3)125
C8—H8···O10.932.282.732 (3)110
C13—H13B···O30.962.262.706 (4)107
 

Acknowledgements

The authors acknowledge SAIF, IIT, Madras, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCody, V., Galitsky, N., Luft, J. R., Pangborn, W., Gangjee, A., Devraj, R., Queener, S. F. & Blakley, R. L. (1997). Acta Cryst. D53, 638–649.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J. J., Anderson, D., Burton, E. G. & Cogburn, J. N. (1995). J. Med. Chem. 38, 4570–4578.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRezende, M. C., Dominguez, M., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o306–o311.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, E. T. da, Ribiero, R. S., Lima, E. L. S., Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o15–o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds